812 resultados para COMPLEMENTARITY-PROBLEMS
Exact penalties for variational inequalities with applications to nonlinear complementarity problems
Resumo:
In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best theoretical results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We close the paper with some preliminary computational tests on the use of a semismooth Newton method to solve the equation derived from the new reformulation. We also compare its performance with the Newton method applied to classical reformulations based on the Fischer-Burmeister function and on the minimum. The new reformulation combines the best features of the classical ones, being as easy to solve as the reformulation that uses the Fischer-Burmeister function while requiring as few Newton steps as the one that is based on the minimum.
Resumo:
We propose a method for accelerating iterative algorithms for solving symmetric linear complementarity problems. The method consists in performing a one-dimensional optimization in the direction generated by a splitting method even for non-descent directions. We give strong convergence proofs and present numerical experiments that justify using this acceleration.
Resumo:
Many variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.
Resumo:
A bounded-level-set result for a reformulation of the box-constrained variational inequality problem proposed recently by Facchinei, Fischer and Kanzow is proved. An application of this result to the (unbounded) nonlinear complementarity problem is suggested. © 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
A reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.
Resumo:
We develop a forward-looking version of the recursive dynamic MIT Emissions Prediction and Policy Analysis (EPPA) model, and apply it to examine the economic implications of proposals in the US Congress to limit greenhouse gas (GHG) emissions. We find that shocks in the consumption path are smoothed out in the forward-looking model and that the lifetime welfare cost of GHG policy is lower than in the recursive model, since the forward-looking model can fully optimize over time. The forward-looking model allows us to explore issues for which it is uniquely well suited, including revenue-recycling and early action crediting. We find capital tax recycling to be more welfare-cost reducing than labor tax recycling because of its long-term effect on economic growth. Also, there are substantial incentives for early action credits; however, when spread over the full horizon of the policy they do not have a substantial effect on lifetime welfare costs.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
This paper describes an parallel semi-Lagrangian finite difference approach to the pricing of early exercise Asian Options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices. Asian options are contingent claims with payoffs that depend on the average price of an asset over some time interval. The payoff may depend on this average and a fixed strike price (Fixed Strike Asians) or it may depend on the average and the asset price (Floating Strike Asians). The option may also permit early exercise (American contract) or confine the holder to a fixed exercise date (European contract). The Fixed Strike Asian with early exercise is considered here where continuous arithmetic averaging has been used. Pricing such an option where the asset price has a stochastic volatility leads to the requirement to solve a tri-variate partial differential inequation in the three state variables of asset price, average price and volatility (or equivalently, variance). The similarity transformations [6] used with Floating Strike Asian options to reduce the dimensionality of the problem are not applicable to Fixed Strikes and so the numerical solution of a tri-variate problem is necessary. The computational challenge is to provide accurate solutions sufficiently quickly to support realtime trading activities at a reasonable cost in terms of hardware requirements.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds applica- tion in many fields. As the complementarity constraints fail the standard Linear In- dependence Constraint Qualification (LICQ) or the Mangasarian-Fromovitz constraint qualification (MFCQ), at any feasible point, the nonlinear programming theory may not be directly applied to MPCC. However, the MPCC can be reformulated as NLP problem and solved by nonlinear programming techniques. One of them, the Inexact Restoration (IR) approach, performs two independent phases in each iteration - the feasibility and the optimality phases. This work presents two versions of an IR algorithm to solve MPCC. In the feasibility phase two strategies were implemented, depending on the constraints features. One gives more importance to the complementarity constraints, while the other considers the priority of equality and inequality constraints neglecting the complementarity ones. The optimality phase uses the same approach for both algorithm versions. The algorithms were implemented in MATLAB and the test problems are from MACMPEC collection.
Resumo:
On this paper we present a modified regularization scheme for Mathematical Programs with Complementarity Constraints. In the regularized formulations the complementarity condition is replaced by a constraint involving a positive parameter that can be decreased to zero. In our approach both the complementarity condition and the nonnegativity constraints are relaxed. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.
Resumo:
We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations.
Resumo:
A numerical algorithm for fully dynamical lubrication problems based on the Elrod-Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark`s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm. [DOI: 10.1115/1.3142903]