906 resultados para COMPETING-RISKS REGRESSION MODEL
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Resumo:
Background: The complex natural history of human papillomavirus (HPV) infections following a single HPV test can be modeled as competing-risks events (i.e., no-, transient- or persistent infection) in a longitudinal setting. The covariates associated with these compet ng events have not been previously assessed using competing-risks regression models. Objectives: To gain further insights in the outcomes of cervical HPV infections, we used univariate- and multivariate competing-risks regression models to assess the covariaies associated with these competing events. Study Design and Methods: Covariates associated with three competing outcomes (no-, transient- or persistent HR-HPV infection) were analysed in a sub-cohort of 1,865 women prospectively followed-up in the NIS (n = 3,187) and LAMS Study (n = 12,114). Results: In multivariate competing-risks models (with two other outcomes as competing events), permanently HR-HPV negative outcome was significantly predicted only by the clearance of ASCUS+Pap during FU, while three independent covariates predicted transient HR-HPV infections: i) number of recent (< 12 months) sexual partners (risk increased), ii) previous Pap screening history (protective), and history of previous CIN (increased risk). The two most powerful predictors of persistent HR-HPV infections were persistent ASCUS+Pap (risk increased), and previous Pap screening history (protective). In pair-wise comparisons, number of recent sexual partners and previous CIN history increase the probability of transient HR-HPV infection against the HR-HPV negative competing event, while previous Pap screening history is protective. Persistent ASCUS+Pap during FU and no previous Pap screening history are significantly associated with the persistent HR-HPV outcome (compared both with i) always negative, and ii) transient events), whereas multiparity is protective. Conclusions: Different covariates are associated with the three main outcomes of cervical HPV infections. The most significant covariates of each competing events are probably distinct enough to enable constructing of a risk-profile for each main outcome.
Resumo:
Background: In addition to the oncogenic human papillomavirus (HPV), several cofactors are needed in cervical carcinogenesis, but whether the HPV covariates associated with incident i) CIN1 are different from those of incident ii) CIN2 and iii) CIN3 needs further assessment. Objectives: To gain further insights into the true biological differences between CIN1, CIN2 and CIN3, we assessed HPV covariates associated with incident CIN1, CIN2, and CIN3. Study Design and Methods: HPV covariates associated with progression to CIN1, CIN2 and CIN3 were analysed in the combined cohort of the NIS (n = 3,187) and LAMS study (n = 12,114), using competing-risks regression models (in panel data) for baseline HR-HPV-positive women (n = 1,105), who represent a sub-cohort of all 1,865 women prospectively followed-up in these two studies. Results: Altogether, 90 (4.8%), 39 (2.1%) and 14 (1.4%) cases progressed to CIN1, CIN2, and CIN3, respectively. Among these baseline HR-HPV-positive women, the risk profiles of incident GIN I, CIN2 and CIN3 were unique in that completely different HPV covariates were associated with progression to CIN1, CIN2 and CIN3, irrespective which categories (non-progression, CIN1, CIN2, CIN3 or all) were used as competing-risks events in univariate and multivariate models. Conclusions: These data confirm our previous analysis based on multinomial regression models implicating that distinct covariates of HR-HPV are associated with progression to CIN1, CIN2 and CIN3. This emphasises true biological differences between the three grades of GIN, which revisits the concept of combining CIN2 with CIN3 or with CIN1 in histological classification or used as a common end-point, e.g., in HPV vaccine trials.
Resumo:
In this paper, we proposed a flexible cure rate survival model by assuming the number of competing causes of the event of interest following the Conway-Maxwell distribution and the time for the event to follow the generalized gamma distribution. This distribution can be used to model survival data when the hazard rate function is increasing, decreasing, bathtub and unimodal-shaped including some distributions commonly used in lifetime analysis as particular cases. Some appropriate matrices are derived in order to evaluate local influence on the estimates of the parameters by considering different perturbations, and some global influence measurements are also investigated. Finally, data set from the medical area is analysed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Traffic-related air pollution has been associated with a wide range of adverse health effects. One component of traffic emissions that has been receiving increasing attention is ultrafine particles(UFP, < 100 nm), which are of concern to human health due to their small diameters. Vehicles are the dominant source of UFP in urban environments. Small-scale variation in ultrafine particle number concentration (PNC) can be attributed to local changes in land use and road abundance. UFPs are also formed as a result of particle formation events. Modelling the spatial patterns in PNC is integral to understanding human UFP exposure and also provides insight into particle formation mechanisms that contribute to air pollution in urban environments. Land-use regression (LUR) is a technique that can use to improve the prediction of air pollution.
Resumo:
Climate change in response to a change in external forcing can be understood in terms of fast response to the imposed forcing and slow feedback associated with surface temperature change. Previous studies have investigated the characteristics of fast response and slow feedback for different forcing agents. Here we examine to what extent that fast response and slow feedback derived from time-mean results of climate model simulations can be used to infer total climate change. To achieve this goal, we develop a multivariate regression model of climate change, in which the change in a climate variable is represented by a linear combination of its sensitivity to CO2 forcing, solar forcing, and change in global mean surface temperature. We derive the parameters of the regression model using time-mean results from a set of HadCM3L climate model step-forcing simulations, and then use the regression model to emulate HadCM3L-simulated transient climate change. Our results show that the regression model emulates well HadCM3L-simulated temporal evolution and spatial distribution of climate change, including surface temperature, precipitation, runoff, soil moisture, cloudiness, and radiative fluxes under transient CO2 and/or solar forcing scenarios. Our findings suggest that temporal and spatial patterns of total change for the climate variables considered here can be represented well by the sum of fast response and slow feedback. Furthermore, by using a simple 1-D heat-diffusion climate model, we show that the temporal and spatial characteristics of climate change under transient forcing scenarios can be emulated well using information from step-forcing simulations alone.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A local climate model (LCM) has been developed to simulate the modern and 18 ka climate of the southwestern United States. ... LCM solutions indicate summers were about 1°C cooler and winters 11°C cooler at 18 ka. Annual PREC increased 68% at 18 ka, with large increases in spring and fall PREC and diminished summer monsoonal PREC. ... Validation of simulations of 18 ka climate indicate general agreement with proxy estimates of climate for that time. However, the LCM estimates of summer temperatures are about 5 to 10°C higher than estimates from proxy reconstructions.