1000 resultados para COMMON-ATOM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prominent effect of the interface potential (IP) [E. L. Ivchenko and A. Yu. Kaminski, Phys. Rev. B 54, 5852 (1996); O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996)], the optical anisotropy of the forbidden transitions in quantum wells has been observed by reflectance-difference spectroscopy. Predictions by the heavy-light-hole coupling IP models are qualitatively consistent with all the observed features of the forbidden and the allowed transitions. The fact that the predicted value of the relative, transition strength, which depends on neither the IP strength nor the electric field, disagrees with the observed one indicates that coupling involving X and/or L bands may also be important. [S0163-1829(99)04227-7].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that asymmetry in the (001) direction can induce in-plane optical anisotropy (IPOA) in (001) quantum wells (QWs). In this letter, asymmetry is introduced in (001) GaAs/AlGaAs QWs by inserting 1 ML (monolayer) of InAs or AlAs at interfaces. Strong IPOA, which is comparable to that in the InGaAs/InP QWs with no common atom, is observed in the asymmetric GaAs/AlGaAs QW by reflectance difference spectroscopy. (C) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multicolour three-photon resonant ionization spectra of U-238 were measured by using the pulsed dye lasers system synchronously pumped by a frequency doubled Nd:YAG-laser 532 nm output(operated at 10 Hz),a device for atomic beam of U, time-of-flight mass spectrometer and boxcar integrator. The dye laser pulses have a 6 ns duration. Beams from the dye lasers, which have the same polarization direction and are focused by lenses, entered an interaction chamber through opposite windows on a common axis and spatialy overlapped the U atomic beam. The optical pulse from dye laser DL2 was delayed to arrive at the interaction region 8 ns after the pulse from dye laser DL1; in the same way,the pulse from DL3 was delayed 8 ns after from DL2. The atomic beam device was made from stainless steel. We generated the U vapor by heating solid U in a graphite crucible by e-type electron -field on first excited states were studied in uranium atom. The question how to determine single-colour, two-colour and three-colour three-photon resonant ionization peak in the three-colour three-photon resonant ionization spectra diagram were solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main theme of this thesis is that there is a common structural basis for drugs acting on the central nervous system (CNS), and that this concept may be used to design new CNS-active drugs which have greater specificity and hence less side-effects. To develop these ideas, the biological basis of how drugs modify CMS neurotransmission is described, and illustrated using dopaminergic pathways. An account is then given of the use of physicochemical concepts in contemporary drug design. The complete conformational analysis of several antipsychotic drugs is used to illustrate some of these techniques in the development of a model for antipsychotic drug action. After reviewing current structure-activity studies in several classes of CNS drugs (antipsychotics, anti-depressants, stimulants, hal1ucinogens, anticonvulsants and analgesics), a hypothesis for a common structural basis of CNS drug action is proposed- This is based on a topographical comparison of the X-ray structures of eight representative CNS-active drugs, and consists of three parts: 1.there is a common structural basis for the activity of many different CNS-active drug classes; 2. an aromatic ring and a nitrogen atom are the primary binding groups whose topographical arrangement is fundamental to the activity of these drug classes; 3. the nature and placement of secondary binding determines different classes of CNS drug activity. A four-Point model for this common structural basis is then defined using 14- CNS-active drug structures that include the original eight used in proposing the hypothesis. The coordinates of this model are: R1 (0. 3.5, 0), R2 (0, -3.5, O), N (4.8. -0.3, 1.4), and R3 (6.3, 1.3, 0), where R1 and R2 represent the point locations of a hydrophobic interaction of the common aromatic ring with a receptor, and R3 locates the receptor point for a hydrogen bond involving the common nitrogen, N. Extended structures were used to define the receptor points R1, R2 and R3, and the complete conformational space of each of the 14 molecules was considered. It is then shoun that the model may be used to predict whether a given structure is likely to show CNS activity: a search over 1,000 entries in the current Merck Index shows a high probability (82%) of CNS activity in compounds fitting the structural model. Analysis of CNS neurotransmitters and neuropeptides shows that these fit the common model well. Based on the available evidence supporting chemical evolution, protein evolution, and the evolution of neurotransmitter functions, it is surmised that the aromatic ring/nitrogen atom pharmacophore proposed in the common model supports the idea of the evolution of CNS receptors and their neurotransmitters, possibly from an aromatic amine or acety1cho1ine acting as a primaeval communicating molecule. The third point in the hypothesis trilogy is then addressed. The extensive conformation-activity analyses that have resulted in well-defined models for five separate CNS drug classes are used to map out the locations of secondary binding groups relative to the common model for anti-psychotics, antidepressants, analgesics, anticholinergics, and anticonvulsants. With this information, and knowledge derived from receptor-binding data, it is postulated that drugs having specified activity could be designed. In order to generate novel structures having a high probability of CNS-activity, a process of drug design is described in which known CNS structures are superimposed topographically using the common model as a template. Atoms regarded as superfluous may be selectively deleted and the required secondary binding groups added in predicted locations to give novel structures. It is concluded that this process provides the basis for the rational design of new lead compounds which could further be optimized for potent and specific CNS activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study an Fe-18Al (at.%) alloy after various thermal treatments at different times (24-336 h) and temperatures (250-1100 °C) to determine the nature of the so-called 'komplex' phase state (or "K-state"), which is common to other alloy systems having compositions at the boundaries of known order-disorder transitions and is characterised by heterogeneous short-range-ordering (SRO). This has been done by direct observation using atom probe tomography (APT), which reveals that nano-sized, ordered regions/particles do not exist. Also, by employing shell-based analysis of the three-dimensional atomic positions, we have determined chemically sensitive, generalised multicomponent short-range order (GM-SRO) parameters, which are compared with published pairwise SRO parameters derived from bulk, volume-averaged measurement techniques (e.g. X-ray and neutron scattering, Mössbauer spectroscopy) and combined ab-initio and Monte Carlo simulations. This analysis procedure has general relevance for other alloy systems where quantitative chemical-structure evaluation of local atomic environments is required to understand ordering and partial ordering phenomena that affect physical and mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examines how society allocates support for species’ conservation when numbers involved are large and resources are limited. Rational behaviour suggests that species in urgent need of conservation will receive more support than those species that are common. However, we demonstrate that in the absence of balanced knowledge common species will receive support more than they would otherwise receive despite society placing high existence values on all species. Twenty four species, both common and endangered and some with a restricted distribution, are examined. We demonstrate that balanced information is vital in order to direct more support for species that are endangered than those that are not. Implications for conservation stemming from the findings are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a fresh analysis of the widely-used Common Scrambling Algorithm Stream Cipher (CSA-SC). Firstly, a new representation of CSA-SC with a state size of only 89 bits is given, a significant reduction from the 103 bit state of a previous CSA-SC representation. Analysis of this 89-bit representation demonstrates that the basis of a previous guess-and-determine attack is flawed. Correcting this flaw increases the complexity of that attack so that it is worse than exhaustive key search. Although that attack is not feasible, the reduced state size of our representation makes it obvious that CSA-SC is vulnerable to several generic attacks, for which feasible parameters are given.