998 resultados para COLUMBIA RIVER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ichthyoplankton samples were collected at approximately 2-week intervals, primarily during spring and summer 1999−2004, from two stations located 20 and 30 km from shore near the Columbia River, Oregon. Northern anchovy (Engraulis mordax) was the most abundant species collected, and was the primary species associated with summer upwelling conditions, but it showed significant interannual and seasonal fluctuations in abundance and occurrence. Other abundant taxa included sanddabs (Citharichthys spp.), English sole (Parophrys vetulus), and blacksmelts (Bathylagidae). Two-way cluster analysis revealed strong species associations based primarily on season (before or after the spring transition date). Ichthyoplankton abundances were compared to biological and environmental data, and egg and larvae abundances were found to be most correlated with sea surface temperature. The Pacific Decadal Oscillation changed sign (from negative to positive) in late 2002 and indicated overall warmer conditions in the North Pacific Ocean. Climate change is expected to alter ocean upwelling, temperatures, and Columbia River flows, and consequently fish eggs and larvae distributions and survival. Long-term research is needed to identify how ichthyoplankton and fish recruitment are affected by regional and largescale oceanographic proces

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Climatological events that disturb a landscape are important components in ecosystem processes. Modern ecosystem management plans now hope to incorporate knowledge of the spatial distribution and frequency of disturbance climate. The following describes a few analytic tools developed to help managers include disturbance climate in an ecosystem management plan for areas in the Columbia River Basin of the northwestern United States.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exotic limestone masses with silicified fossils, enclosed within deep-water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep-water methane-seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative d13Ccarbonate values as low as -37.6 per mill V-PDB reveal an uptake of methane-derived carbon. In other cases, d13Ccarbonate values as high as 7.1 per mill point to a residual, 13C-enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C-depleted, archaeal 2,6,10,15,19-pentamethylicosane (PMI; d13C: -128 per mill), crocetane and phytane, as well as various iso- and anteiso-carbon chains, most likely derived from sulphate-reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate-dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement - also observed in other methane-seep limestones enclosed in sediments with abundant diatoms or radiolarians - is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"U.S. Geological Survey, U.S. Department of the Interior"--P. [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mimeographed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois, 1965.