252 resultados para COLORLESS
Resumo:
The natural chlorophyll degradation results in noncolored chlorophyll catabolites (NCCs), but there are controversies if these are the final products. The formation and degradation of NCCs during soybean seed (Glycine max L. Merrill) maturation and two drying temperatures were investigated. Soybean was harvested at six maturation stages. The effect of postharvest drying at 40 and 60 degrees C on the NCC formation was analyzed by high-performance liquid chromatography (HPLC), and results were expressed as areas under the curve. All samples contained fractions with an absorption maximum at 320 nm, typical for NCC. The amounts of NCC increased until 114 days after planting and were significantly lower in advanced maturation stages. These results indicate that the NCC in soybeans might not be the final products of chlorophyll degradation. Their reduction in advanced maturation stages may be due to further metabolization. Heating soybeans at 40 and 60 degrees C promoted unnatural chlorophyll degradation and impaired the formation of NCC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Senescent higher plants degrade their chlorophylls (Chls) to polar colorless tetrapyrrolic Chl catabolites, which accumulate in the vacuoles. In extracts from degreened leaves of the tree Cercidiphyllum japonicum an unpolar catabolite of this type was discovered. This tetrapyrrole was named Cj-NCC-2 and was found to be identical with the product of a stereoselective nonenzymatic isomerization of a “fluorescent” Chl catabolite. This (bio-mimetic) formation of the “nonfluorescent” catabolite Cj-NCC-2 took place readily at ambient temperature and at pH 4.9 in aqueous solution. The indicated nonenzymatic process is able to account for a crucial step during Chl breakdown in senescent higher plants. Once delivered to the acidic vacuoles, the fluorescent Chl catabolites are due to undergo a rapid, stereoselective isomerization to the ubiquitous nonfluorescent catabolites. The degradation of the Chl macrocycle is thus indicated to rely on just two known enzymes, one of which is senescence specific and cuts open the chlorin macroring. The two enzymes supply the fluorescent Chl catabolites, which are “programmed” to isomerize further rapidly in an acidic medium, as shown here. Indeed, only small amounts of the latter are temporarily observable during senescence in higher plants.
Resumo:
An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.
Resumo:
Particulate matter, especially PM2.5, is associated with increased morbidity and mortality from respiratory diseases. Studies that focus on the chemical composition of the material are frequent in the literature, but those that characterize the biological fraction are rare. The objectives of this study were to characterize samples collected in Sao Paulo, Brazil on the quantity of fungi and endotoxins associated with PM2.5, correlating with the mass of particulate matter, chemical composition and meteorological parameters. We did that by Principal Component Analysis (PCA) and multiple linear regressions. The results have shown that fungi and endotoxins represent significant portion of PM2.5, reaching average concentrations of 772.23 spores mu g(-1) of PM2.5 (SD: 400.37) and 5.52 EU mg(-1) of PM2.5 (SD: 4.51 EU mg(-1)), respectively. Hyaline basidiospores, Cladosporium and total spore counts were correlated to factor Ba/Ca/Fe/Zn/K/Si of PM2.5 (p < 0.05). Genera Pen/Asp were correlated to the total mass of PM2.5 (p < 0.05) and colorless ascospores were correlated to humidity (p < 0.05). Endotoxin was positively correlated with the atmospheric temperature (p < 0.05). This study has shown that bioaerosol is present in considerable amounts in PM2.5 in the atmosphere of Sao Paulo, Brazil. Some fungi were correlated with soil particle resuspension and mass of particulate matter. Therefore, the relative contribution of bioaerosol in PM2.5 should be considered in future studies aimed at evaluating the clinical impact of exposure to air pollution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Formaldehyde (FA), also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferating cultured mammalian cells. The cytokinesis-block micronucleus (CBMN) assay was originally developped as an ideal system form easuring micronucleus (MN), however it can also be used to measure nucleoplasmic bridges (NBP) and nuclear buds (NBUD). Over the past decade another unique mechanism of micronucleus formation, known as nuclear budding has emerged. NBUDS is considered as a marker of gene amplification and/or altered gene dosage because the nuclear budding process is the mechanism by which cells removed amplified and/excess DNA.
Resumo:
Formaldehyde (FA) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1ppm. According to the Report on Carcinogens, FA ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks. Incomplete repair of DPX can lead to the formation of mutations.
Resumo:
Formaldehyde (CH2O) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1 ppm. According to the Report on Carcinogens, formaldehyde (FA) ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks (DPX). Incomplete repair of DPX can lead to the formation of mutations.
Resumo:
Formaldehyde (CH2O), the most simple and reactive of all aldehydes, is colorless, and readily polymerizing gas at normal temperature. The most extensive use is in production of resins and has an important application as a disinfectant and preservative, reason why relevant workplace exposure may also occur in pathology and anatomy laboratories and in mortuaries. A study was carried out in Portugal, in a formaldehyde production resins factory and in 10 pathology and anatomy laboratories. It was applied a risk assessment methodology based on Queensland University proposal that permitted to perform risk assessment for each activity developed in a work station. This methodology was applied in 83 different activities developed in the laboratories and in 18 activities of the factory. Also, Micronucleus Test was performed in lymphocytes from 30 factory workers and 50 laboratories workers.
Resumo:
Formaldehyde, also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. To perform exposure assessment is necessary define exposure groups and in this occupational setting the technicians and pathologists are the most important groups. In the case of formaldehyde, it seems that health effects are more related with peak exposures than with exposure duration.
Resumo:
Formaldehyde (CH2O), the most simple and reactive aldehyde, is a colorless, reactive and readily polymerizing gas at room temperature (National Toxicology Program [NTP]. It has a pungent suffocating odor that is recognized by most human subjects at concentrations below 1 ppm. Aleksandr Butlerov synthesized the chemical in 1859, but it was August Wilhelm von Hofmann who identified it as the product formed from passing methanol and air over a heated platinum spiral in 1867. This method is still the basis for the industrial production of formaldehyde today, in which methanol is oxidized using a metal catalyst. By the early 20th century, with the explosion of knowledge in chemistry and physics, coupled with demands for more innovative synthetic products, the scene was set for the birth of a new material–plastics. According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Formaldehyde annual production rises up to 21 million tons worldwide and it has increased in China with 7.5 million tons produced in 2007. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Commercially, formaldehyde is manufactured as an aqueous solution called formalin, usually containing 37% by weight of dissolved formaldehyde. This chemical is present in all regions of the atmosphere arising from the oxidation of biogenic and anthropogenic hydrocarbons. Formaldehyde concentration levels range typically from 2 to 45 ppbV (parts per billion in a given volume) in urban settings that are mainly governed by primary emissions and secondary formation.
Resumo:
A par das patologias oncológicas, as doenças do foro cardíaco, em particular a doença arterial coronária, são uma das principais causas de morte nos países industrializados, devido sobretudo, à grande incidência de enfartes do miocárdio. Uma das formas de diagnóstico e avaliação desta condição passa pela obtenção de imagens de perfusão miocárdica com radionuclídeos, realizada por Tomografia por Emissão de Positrões (PET). As soluções injectáveis de [15O]-H2O, [82Rb] e [13N]-NH3 são as mais utilizadas neste tipo de exame clínico. No Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), a existência de um ciclotrão tem permitido a produção de uma variedade de radiofármacos, com aplicações em neurologia, oncologia e cardiologia. Recentemente, surgiu a oportunidade de iniciar exames clínicos com [13N]-NH3 para avaliação da perfusão miocárdica. É neste âmbito que surge a oportunidade do presente trabalho, pois antes da sua utilização clínica é necessário realizar a optimização da produção e a validação de todo o processo segundo as normas de Boas Práticas Radiofarmacêuticas. Após uma fase de optimização do processo, procedeu-se à avaliação dos parâmetros físico-químicos e biológicos da preparação de [13N]-NH3, de acordo com as indicações da Farmacopeia Europeia (Ph. Eur.) 8.2. De acordo com as normas farmacêuticas, foram realizados 3 lotes de produção consecutivos para validação da produção de [13N]-NH3. Os resultados mostraram um produto final límpido e ausente de cor, com valores de pH dentro do limite especificado, isto é, entre 4,5 e 8,5. A pureza química das amostras foi verificada, uma vez que relativamente ao teste colorimétrico, a tonalidade da cor da solução de [13N]-NH3 não era mais intensa que a solução de referência. As preparações foram identificadas como sendo [13N]-NH3, através dos resultados obtidos por cromatografia iónica, espectrometria de radiação gama e tempo de semi-vida. Por examinação do cromatograma obtido com a solução a ser testada, observou-se que o pico principal possuia um tempo de retenção aproximadamente igual ao pico do cromatograma obtido para a solução de referência. Além disso, o espectro de radiação gama mostrou um pico de energia 0,511 MeV e um outro adicional de 1,022 MeV para os fotões gama, característico de radionuclídeos emissores de positrões. O tempo de semi-vida manteve-se dentro do intervalo indicado, entre 9 e 11 minutos. Verificou-se, igualmente, a pureza radioquímica das amostras, correspondendo um mínimo de 99% da radioactividade total ao [13N], bem como a pureza radionuclídica, observando-se uma percentagem de impurezas inferiores a 1%, 2h após o fim da síntese. Os testes realizados para verificação da esterilidade e determinação da presença de endotoxinas bacterianas nas preparações de [13N]-NH3 apresentaram-se negativos.Os resultados obtidos contribuem, assim, para a validação do método para a produção de [13N]-NH3, uma vez que cumprem os requisitos especificados nas normas europeias, indicando a obtenção de um produto seguro e com a qualidade necessária para ser administrado em pacientes para avaliação da perfusão cardíaca por PET.