957 resultados para COLLOIDAL GOLD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloidal gold nanoparticles were synthesized by different procedures affording suspensions with two different mean sizes (2 and 5 nm). Au catalysts were prepared by sol immobilization onto several silica frameworks with different 2D and 3D mesoporosities. The catalysts were tested in styrene oxidation reactions showing excellent efficiency and selectivity. The effect of nanoparticle size and mesoporous framework on the physical and catalytic properties of the final materials was studied. The most selective catalyst was prepared from the 5 nm Au nanoparticles and the more interconnected silica framework (3D mesoporosity).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The time evolution of colloidal gold particles in the nanometric regime has been investigated by employing electron microscopy and electronic absorption spectroscopy. The particle size distributions are essentially Gaussian and show the same time dependence for both the mean and the standard deviation, enabling us to obtain a time-independent universal curve for the particle size. Temperature dependent studies show the growth to be an activated process with a barrier of about 18 kJ mol(-1). We present a phenomenological equation for the evolution of particle size and suggest that the growth process is stochastic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colloidal gold was prepared by UV light irradiation of the mixture of HAuCl4 aqueous solution and poly(vinyl pyrrolidone) (PVP) ethanol solution in the presence of silver ions. The resulting sheet-like nanoparticles were found to self-assemble into nanoflowers by a centrifuging process. The results of control experiments reflected that only suitable size sheet-like nanoparticles could assemble into the flower-like structures. The presence of Ag ions and PVP are essential for the formation process of nanoflowers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports a versatile seed-mediated growth method for selectively synthesizing single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. In the seed-mediated growth method, cetylpyridinium chloride (CPC) and CPC-capped single-crystalline gold nanocrystals 41.3 nm in size are used as the surfactant and seeds, respectively. The CPC-capped gold seeds can avoid twinning during the growth process, which enables us to study the correlations between the growth conditions and the shapes of the gold nanocrystals. Surface-energy and kinetic considerations are taken into account to understand the formation mechanisms of the single-crystalline gold nanocrystals with varying shapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A useful method for the synthesis of various gold nanostructures is presented. The results demonstrated that flowerlike nanoparticle arrays, nanowire networks, nanosheets, and nanoflowers were obtained on the solid substrate under different experimental conditions. In addition, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) on the as-prepared gold nanostructures of various shapes were measured, and their shape-dependent properties were evaluated. The intensity of the SERS signal was the smallest for the gold nanosheets, and the flowerlike nanoparticle arrays gave the strongest SERS signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/ mL. The high performance of the method is related to the sensitive ASV determination of silver(I) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG(3)-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and Fr-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG(6)-COOH and HS-OEG(3)-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sandwich immunoassay for PSA/ACT complex detection based on gold nanoparticle aggregation using two probes was developed. The functionalized colloidal gold nanoparticles (AuNPs) showed highly stable not only in the presence of high ionic strength but also in a wide pH range. The functionalized AuNPs were tagged with PSA/ACT complex monoclonal antibody and goat PSA polyclonal antibody and served as the probes to induce aggregation of the colloidal particles. As a result, PSA/ACT complex was detected at concentrations as low as 1 ng/ml. This is the first time that a new aggregation sandwich-immunoassay technique using two gold probes has been used, and the results are generally applicable to other LSPR-based immunoassays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.

Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.

Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atomic absorption spectroscopy is used to determine concentration of gold in waters of the Bering Sea and North Pacific. Distributions of gold and organic carbon in colloidal and "dissolved" fractions separated by ultrafiltration through Vladipor filters are determined. Direct evidence of gold association with colloidal matter of sea water is presented and concentrations of gold in various fractions of colloidal solutions are determined. The most important forms of occurrence of colloidal gold prove to be high molecular weight fractions, and the most important form of colloidal organic carbon (Corg) is low molecular fraction. Dissolved forms are important in the balance of gold and Corg. Variations in forms of occurrence of gold and Corg in vertical profiles are described.