656 resultados para COLLAPSE DISORDER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nosema ceranae is an emergent and potentially virulent pathogen of the honey bee (Apis mellifera) that has spread across the world in the last 10 or so years. Its precise origin and timing of spread are currently unclear because of a lack of appropriate genetic markers and inadequate sampling in putative Asian source populations. Though it has been dismissed as a cause of CCD in the USA based on correlational analyses of snapshot sampling of diseased hives, observations of naturally infected colonies suggest that it leads to colony collapse in Spain. Experiments are sorely needed to investigate its impact on individuals and colonies, and to pin down a causal relationship between N. ceranae and colony collapse. Whether N. ceranae is displacing N. apis is uncertain. For temperate zone apiculturalists, global climate change may mean that N. ceranae presents more of a challenge than has hitherto been considered the case.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including 'Colony Collapse Disorder' and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e. g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, tau-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North-and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accounting for biodiversity has received increasing attention from the academic accounting community in recent years. Despite a stream of research investigating the quality and quantity of biodiversity reporting in general, no academic research has focused on reporting related to one specific species. This paper explores the quality and quantity of corporate disclosures relating to bees. Society is becoming increasingly concerned about the accelerating fall in bee populations around the world. Colony Collapse Disorder has been spreading through global bee populations since 2006, decimating commercial hives. Concerns are fuelled by fears that pollinators may become extinct which would have dire consequences for the majority of world food production, leaving human pollination, at immense cost, the only alternative. On the basis of these fears, companies as well as other organisations, have started to establish programmes aimed at rejuvenating global bee populations. In this paper we explore the bee-related disclosures provided by a large selection of UK listed companies. We assess the extent to which companies believe they have a role to play in enhancing and protecting bee populations. Further we consider whether corporate accountability in this area derives solely from a business case or whether there is a deeper societal connection with bees as a species which is encouraging companies to protect their survival. The paper investigates the historical and philosophical connection between bees and human beings, for example the ways industrial production has been likened to honey production. We draw parallels between bees and human industrial organisation as well as between the role and responsibilities of the bookkeeper and the beekeeper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os ácaros ectoparasitas Varroa destructor, que parasitam as abelhas tornaram-se um problema global. Embora seja pouco provável que estes ácaros, por si só, provoquem a mortalidade das colmeias, eles desempenham um importante papel como vetor de muitas doenças virais. E estas doenças são identificados como algumas das mais importantes razões para a Desordem do Colapso das Colônias. Os efeitos da infestação do V.destructor são distintas em diferentes partes do mundo. Maiores mortalidades de colônias têm sido relatadas em colônias de abelhas européias (AE) em países da Europa, Ásia e América do Norte. No entanto, este ácaro está presente no Brasil já por muitos anos e não existem relatos de perdas em colônias das abelhas africanizadas (AA). Estudos realizados no México mostraram que alguns comportamentos de resistência ao ácaro Varroa - especialmente o grooming e o comportamento higiênico - são diferentes em cada uma das subespécie. Poderiam então esses mecanismos explicar por que as abelhas africanizadas são menos suscetíveis à Desordem do Colapso das Colônias? A fim de responder a esta pergunta, propomos um modelo matemático baseado em equações diferenciais, com o objetivo de analisar o papel desses mecanismos de resistência na saúde geral da colônia e na capacidade da colônia para enfrentar desafios ambientais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bees have a crucial role in pollination; therefore, it is important to determine the causes of their recent decline. Fipronil and imidacloprid are insecticides used worldwide to eliminate or control insect pests. Because they are broad-spectrum insecticides, they can also affect honeybees. Many researchers have studied the lethal and sublethal effects of these and other insecticides on honeybees, and some of these studies have demonstrated a correlation between the insecticides and colony collapse disorder in bees. The authors investigated the effects of fipronil and imidacloprid on the bioenergetic functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Fipronil caused dose-dependent inhibition of adenosine 5'-diphosphate-stimulated (state 3) respiration in mitochondria energized by either pyruvate or succinate, albeit with different potentials, in thoracic mitochondria; inhibition was strongest when respiring with complex I substrate. Fipronil affected adenosine 5'-triphosphate (ATP) production in a dose-dependent manner in both tissues and substrates, though with different sensitivities. Imidacloprid also affected state-3 respiration in both the thorax and head, being more potent in head pyruvate-energized mitochondria; it also inhibited ATP production. Fipronil and imidacloprid had no effect on mitochondrial state-4 respiration. The authors concluded that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted ATP. This action can explain the toxicity of these compounds to honeybees. (c) 2014 SETAC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sacbrood disease, an affliction of honey bees (Apis mellifera) characterized by brood that fails to pupate and subsequently dies, is an important threat to honey bee health. The disease is caused by the sacbrood virus (SBV), a positive-, single-stranded RNA virus in the order Picornavirales. Because of the economic importance of honey bees for both pollination and honey production, it is vital to understand and monitor the spread of viruses such as SBV. This virus has been found in many places across the globe, including recently in some South American countries, and it is likely that it will continue to spread. We performed a preliminary study to search for SBV in two apiaries of Africanized honey bees in the State of Sao Paulo, Brazil, using RT-PCR and Sanger sequencing and found the first evidence of SBV in honey bee colonies in Brazil. The virus was detected in larvae, foraging and nurse bees from two colonies, one of which had symptoms of sacbrood disease, at the beginning of the winter season in June 2011. No SBV was found in samples from nine other nearby colonies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apis mellifera L., the European honeybee, is a crucial pollinator of many important agricultural crops in the United States. Recently, honeybee colonies have been affected by Colony Collapse Disorder (CCD), a disorder in which the colony fails due to the disappearance of a key functional group of worker bees. Though no direct causalrelationship has been confirmed, hives that experience CCD have been shown to have a high incidence of Deformed Wing Virus (DWV), a common honeybee virus. While the genome sequence and gene-order of DWV has been analyzed fairly recently, few other studies have been performed to understand the molecular characterization of the virus.Since little is known about where DWV proteins localize in infected host cells, the objective of this project was to determine the subcellular localization of two of the important non-structural proteins that are encoded in the DWV genome. This project focused on the protein 3C, an autocatalytic protease which cleaves itself from a longer polyprotein and helps to cut all of the other proteins apart from one another so that they can become functional, and 3D, the RNA-dependent RNA polymerase (RdRp) which is critical for replication of the virus because it copies the viral genome. By tagging nested constructs containing these two proteins and tracking where they localized in living cells, this study aimed to better understand the replication of DWV and to elicit possible targetsfor further research on how to control the virus. Since DWV is a picorna-like virus, distantly related to human viruses such as polio, and picornavirus non-structural proteins aggregate at cellular membranes during viral replication, the major hypothesis was that the 3C and 3CD proteins would localize at cellular organelle membranes as well. Using confocal microscopy, both proteins were found to localize in the cytoplasm, but the 3CDprotein was found to be mostly diffuse cytoplasmic, and the 3C protein was found to localize more specifically on membranous structures just outside of the nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.