997 resultados para COLLAGEN-SYNTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collagen synthesis inhibition potentially can reduce adhesion formation after tendon injury but also may affect cutaneous wound healing. We hypothesized that a novel orally administered collagen synthesis inhibitor (CPHI-I) would substantially reduce flexor tendon adhesions after injury, without any clinically important effect on cutaneous wound healing. The experiments were performed in a rat model with an in-continuity crush injury model in the rat hindfoot flexor tendon to provoke adhesion formation. Assays of dermal collagen production and the rate of healing of an excised wound were performed to assess cutaneous wound healing. Animals in the treatment groups received CPHI-I for 1, 2, or 6 weeks and were assessed at either 2 or 6 weeks. The work of flexion in the injured digit was reduced in the CPHI-I-treated animals compared with control animals, (0.188 J versus 0.0307 J at 2 weeks, and 0.0231 J versus 0.0331 J at 6 weeks) The cutaneous wound healing rate was similar in all animals, but dermal collagen synthesis was reduced in the treated animals. The CPHI-I seems to reduce tendon adhesion, and although collagen synthesis was reduced in cutaneous wounds, CPHI-I did not retard wound healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The characterization of B cell epitopes has been advanced by the use of random peptide libraries displayed within the coat protein of bacteriophage. This technique was applied to the monoclonal antibody (mAb) C1 to type II collagen (CII-C1). CII-C1 is known to react with a conformational epitope on type II collagen that includes residues 359-363. Three rounds of selection were used to screen two random nonameric phage libraries and 18 phagotopes were isolated. CII-C1 reacted by ELISA with 17 of the 18 phagotopes: one phagotope contained a stop codon. Of the eight most reactive phage, seven inhibited the reactivity by ELISA of CII-C1 with type II collagen. Of the 18 phage isolated, 11 encoded the motif F-G-x-Q with the sequence F-G-S-Q in 6, 2 encoded F-G-Q, and one the reverse motif Q-x-y-F. Most phagotopes that inhibited the reactivity of CII-C1 encoded two particular motifs consisting of two basic amino acid residues and a hydrophobic residue in the first part of the insert and the F-G-x-Q or F-G-Q motif ill the second part; phagotopes which contained only one basic residue in the first part of the sequence were less reactive. These motifs are not represented in the linear sequence of type II collagen and thus represent mimotopes of the epitope for CII-C1 on type II collagen. There were five phagotopes with peptide inserts containing the sequence RLPFG occurring in the Epstein-Barr virus nuclear antigen, EBNA- 1. This is of interest because EBV has been implicated in the initiation of rheumatoid arthritis (RA) by reason of increased reactivity to EBNA-1 in RA sera. In conclusion, the phage display technique disclosed mimotopes for a conformational epitope of type II collagen, and revealed an interesting homology with a sequence of the EBNA-1 antigen from Epstein Barr virus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fact that drugs currently used in the treatment of Leishmania are highly toxic and associated with acquired resistance has promoted the search for new therapies for treating American tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combination of nitric oxide (NO) donor (cis-[Ru(bpy)(2)imN(NO)](PF6)(3)) (Ru-NO), given by intraperitoneal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histological and immunological parameters of chronic inflammation showed that this combined treatment increased the efficacy of macrophages, determined by the decrease in the number of parasitized cells, leading to reduced expression of proinflammatory and tissue damage markers. In addition, these drugs in combination fostered wound healing, enhanced the number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazilian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that can be considered for further in vivo investigations as a candidate for the treatment of cutaneous leishmaniasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of hypertrophic scars is a frequent medical outcome of wound repair and often requires further therapy with treatments such as Silicone Gel Sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis upon exposure to cultures of fibroblasts derived from hypertrophic scars (HSF). By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present following treatment and thereby reducing collagen production as a result. Upon exposure of fraction IV to human keratinocytes, viability and proliferation was also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regenerative medicine techniques are currently being investigated to replace damaged cartilage. Critical to the success of these techniques is the ability to expand the initial population of cells while minimising de-differentiation to allow for hyaline cartilage to form. Three-dimensional culture systems have been shown to enhance the differentiation of chondrocytes in comparison to two-dimensional culture systems. Additionally, bioreactor expansion on microcarriers can provide mechanical stimulation and reduce the amount of cellular manipulation during expansion. The aim of this study was to characterise the expansion of human chondrocytes on microcarriers and to determine their potential to form cartilaginous tissue in vitro. High-grade human articular cartilage was obtained from leg amputations with ethics approval. Chondrocytes were isolated by collagenase digestion and expanded in either monolayers (104 cells/cm2) or on CultiSpher-G microcarriers (104 cells/mg) for three weeks. Following expansion, monolayer cells were passaged and cells on microcarriers were either left intact or the cells were released with trypsin/EDTA. Pellets from these three groups were formed and cultured for three weeks to establish the chondrogenic differentiation potential of monolayer-expanded and microcarrier-expanded chondrocytes. Cell viability, proliferation, glycosaminoglycan (GAG) accumulation, and collagen synthesis were assessed. Histology and immunohistochemistry were also performed. Human chondrocytes remained viable and expanded on microcarriers 10.2±2.6 fold in three weeks. GAG content significantly increased with time, with the majority of GAG found in the medium. Collagen production per nanogram DNA increased marginally during expansion. Histology revealed that chondrocytes were randomly distributed on microcarrier surfaces yet most pores remained cell free. Critically, human chondrocytes expanded on microcarriers maintained their ability to redifferentiate in pellet culture, as demonstrated by Safranin-O and collagen II staining. These data confirm the feasibility of microcarriers for passage-free cultivation of human articular chondrocytes. However, cell expansion needs to be improved, perhaps through growth factor supplementation, for clinical utility. Recent data indicate that cell-laden microcarriers can be used to seed fresh microcarriers, thereby increasing the expansion factor while minimising enzymatic passage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atopic dermatitis (AD) or atopic eczema is characterised by a superficial skin inflammation with an overall Th2 cell dominance and impaired function of the epidermal barrier. Patients also are at an increased risk for asthma and allergic rhinitis. Treatment with tacrolimus ointment inhibits T cell activation and blocks the production of several inflammatory cytokines in the skin, without suppressing collagen synthesis. The aims of this thesis were to determine: (1) long-term efficacy, safety, and effects on cell-mediated immunity and serum IgE levels in patients with moderate-to-severe AD treated for 1 year with tacrolimus ointment or a corticosteroid regimen, (2) the 10-year outcome of eczema, respiratory symptoms, and serum IgE levels in AD patients initially treated long-term with tacrolimus ointment, and (3) pharmacokinetics and long-term safety and efficacy of 0.03% tacrolimus ointment in infants under age 2 with AD. Cell-mediated immunity, reflecting Th1 cell reactivity, was measured by recall antigens and was at baseline lower in patients with AD compared to healthy controls. Treatment with either 0.1% tacrolimus ointment or a corticosteroid regimen for one year enhanced recall antigen reactivity. Transepidermal water loss (TEWL), an indicator of skin barrier function, decreased at months 6 and 12 in both tacrolimus- and corticosteroid-treated patients; TEWL for the head and neck was significantly lower in tacrolimus-treated patients. Patients in the 10-year open follow-up study showed a decrease in affected body surface area from a baseline 19.0% to a 10-year 1.6% and those with bronchial hyper-responsiveness at baseline showed an increase in the provocative dose of inhaled histamine producing a 15% decrease in FEV1, indicating less hyper-responsiveness. Respiratory symptoms (asthma and rhinitis) reported by the patient decreased in those with active symptoms at baseline. A good treatment response after one year of tacrolimus treatment predicted a good treatment response throughout the 10-year follow-up and a decrease in total serum IgE levels at the 10-year follow-up visit. The 2-week pharmacokinetic and the long-term study with 0.03% tacrolimus ointment showed good and continuous improvement of AD in the infants. Tacrolimus blood levels were throughout the study low and treatment well tolerated. This thesis underlines the importance of effective long-term topical treatment of AD. When the active skin inflammation decreases, cell-mediated immunity of the skin improves and a secondary marker for Th2 cell reactivity, total serum IgE, decreases. Respiratory symptoms seem to improve when the eczema area decreases. All these effects can be attributed to improvement of skin barrier function. One potential method to prevent a progression from AD to asthma and allergic rhinitis may be avoidance of early sensitisation through the skin, so early treatment of AD in infants is crucial. Long-term treatment with 0.03% tacrolimus ointment was effective and safe in infants over age 3 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Patients with atopic dermatitis often have a poor long-term response to conventional topical or systemic treatments. Staphylococcal superinfections, skin atrophy due to corticosteroid use, and asthma and allergic rhinitis are common. Only a few, usually short-term, studies have addressed the effects of different treatments on these problems. Tacrolimus ointment is the first topical compound suitable for long-term treatment. The aim of this thesis was to evaluate the effects of long-term topical tacrolimus treatment on cutaneous staphylococcal colonization, collagen synthesis, and symptoms and signs of asthma and allergic rhinitis. Methods: Patients with moderate-to-severe atopic dermatitis were treated with intermittent 0.1% tacrolimus ointment in prospective, open studies lasting for 6 to 48 months. In Study I, cutaneous staphylococcal colonization was followed for 6 to 12 months. In Study II, skin thickness and collagen synthesis were followed by skin ultrasound and procollagen I and III propeptide concentrations of suction blister fluid samples for 12 to 24 months and compared with a group of corticosteroid-treated atopic dermatitis patients and with a group of healthy subjects. Study III was a cross-sectional study of the occurrence of respiratory symptoms, bronchial hyper-responsiveness, and sputum eosinophilia in atopic dermatitis patients and healthy controls. In Study V, the same parameters as in Study III were assessed in atopic dermatitis patients before and after 12 to 48 months of topical tacrolimus treatment. Study IV was a retrospective follow-up of the effect of tacrolimus 0.03% ointment on severe atopic blepharoconjunctivitis and conjunctival cytology. Results: The clinical response to topical tacrolimus was very good in all studies (p≤0.008). Staphylococcal colonization decreased significantly, and the effect was sustained throughout the study (p=0.01). Skin thickness (p<0.001) and markers of collagen synthesis (p<0.001) increased in the tacrolimus-treated patients significantly, whereas they decreased or remained unchanged in the corticosteroid-treated controls. Symptoms of asthma and allergic rhinitis (p<0.0001), bronchial hyper-responsiveness (p<0.0001), and sputum eosinophilia (p<0.0001) were significantly more common in patients with atopic dermatitis than in healthy controls, especially in subjects with positive skin prick tests or elevated serum immunoglobulin E. During topical tacrolimus treatment the asthma and rhinitis (p=0.005 and p=0.002) symptoms and bronchial hyper-responsiveness (p=0.02) decreased significantly, and serum immunoglobulin E and sputum eosinophils showed a decreasing trend in patients with the best treatment response. Treatment of atopic blepharoconjunctivitis resulted in a marked clinical response and a significant decrease in eosinophils, lymphocytes, and neutrophils in the conjunctival cytology samples. No significant adverse effects or increase in skin infections occurred in any study. Conclusions: The studies included in this thesis, except the study showing an increase in skin collagen synthesis in tacrolimus-treated patients, were uncontrolled, warranting certain reservations. The results suggest, however, that tacrolimus ointment has several beneficial effects in the long-term intermittent treatment of atopic dermatitis. Tacrolimus ointment efficiently suppresses the T cell-induced inflammation of atopic dermatitis. It has a normalizing effect on the function of the skin measured by the decrease in staphylococcal colonization. It does not cause skin atrophy as do corticosteroids but restores the skin collagen synthesis in patients who have used corticosteroids. Tacrolimus ointment has no marked systemic effect, as the absorption of the drug is minimal and decreases along with skin improvement. The effects on the airway: decrease in bronchial hyper-responsiveness and respiratory symptoms, can be speculated to be caused by the decrease in T cell trafficking from the skin to the respiratory tissues as the skin inflammation resolves, as well as inhibition of epicutaneous invasion of various antigens causing systemic sensitization when the skin barrier is disrupted as in atopic dermatitis. Patients with moderate-to-severe atopic dermatitis seem to benefit from efficient long-term treatment with topical tacrolimus.