859 resultados para COCKAYNE-SYNDROME


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5`S)-8,5`-cyclo-2`-deoxyadenosine (S-cdA). Among many DNA lesions. S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5` covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is characterized by impaired physical and mental development. Two complementation groups, CSA and CSB, have been identified. Here we report that the CSB gene product enhances elongation by RNA polymerase II. CSB stimulated the rate of elongation on an undamaged template by a factor of about 3. A thymine-thymine cyclobutane dimer located in the template strand is known to be a strong block to transcription. Addition of CSB to the blocked polymerase resulted in addition of one nucleotide to the nascent transcript. Finally, addition of transcription factor IIS is known to cause polymerase blocked at a thymine-thymine cyclobutane dimer to digest its nascent transcript, and CSB counteracted this transcript shortening action of transcription factor IIS. Thus a deficiency in transcription elongation may contribute to the CS phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) of ultraviolet light-damaged DNA in eukaryotes requires a large number of highly conserved protein factors. Recent studies in yeast have suggested that NER involves the action of distinct protein subassemblies at the damage site rather than the placement there of a "preformed repairosome" containing all the essential NER factors. Neither of the two endonucleases, Rad1-Rad10 and Rad2, required for dual incision, shows any affinity for ultraviolet-damaged DNA. Rad1-Rad10 forms a ternary complex with the DNA damage recognition protein Rad14, providing a means for targeting this nuclease to the damage site. It has remained unclear how the Rad2 nuclease is targeted to the DNA damage site and why mutations in the human RAD2 counterpart, XPG, result in Cockayne syndrome. Here we examine whether Rad2 is part of a higher order subassembly. Interestingly, we find copurification of Rad2 protein with TFIIH, such that TFIIH purified from a strain that overexpresses Rad2 contains a stoichiometric amount of Rad2. By several independent criteria, we establish that Rad2 is tightly associated with TFIIH, exhibiting an apparent dissociation constant < 3.3 x 10(-9) M. These results identify a novel subassembly consisting of TFIIH and Rad2, which we have designated as nucleotide excision repair factor 3. Association with TFIIH provides a means of targeting Rad2 to the damage site, where its endonuclease activity would mediate the 3' incision. Our findings are important for understanding the manner of assembly of the NER machinery and they have implications for Cockayne syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La réparation par excision de nucléotides (NER) permet l'élimination des lésions provoquant une distorsion de la double hélice de l’ADN. Ces lésions sont induites par plusieurs agents environnementaux comme les rayons UV, ainsi que par certaines drogues chimio- thérapeutiques tel que le cisplatine. Des défauts dans la NER conduisent à de rares maladies autosomiques héréditaires : La xérodermie pigmentaire (XP), le syndrome de Cockayne (CS), le syndrome de sensibilité aux UVSS et la trichothiodystrophie (TTD). Ces maladies sont associées soit à une prédisposition élevée au cancer de la peau et / ou à de graves anomalies du développement neurologique. Le groupe de patients XP-A représente le deuxième groupe (XP) le plus fréquent, et possède la forme la plus sévère combinant cancer de la peau avec un haut risque de dégénérescence neurologique. À date, aucune explication n`a été proposée pour les symptômes neurologiques observés chez ces patients. Nous avions suggéré ainsi que la protéine XPA possède d`autres fonctions dans d`autres processus cellulaires, ceci en interagissant avec des partenaires protéiques différents de ceux déjà connus. Afin de confirmer cette hypothèse nous avions réalisé une étude protéomique à grande échelle en combinant la spectrométrie de masse à une immunoprécipitation en Tandem d`affinité (TAP), afin d`identifier de nouvelles protéines interagissant directement avec XPA. Nous avions montré que XPA peut interagir avec MRE11, la protéine clé de la réparation par recombinaison homologue. Des études additionnelles sont requises pour confirmer cette interaction et comprendre sa fonction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit war die Untersuchung der Bedeutung der Poly(ADP-Ribose)-Polymerase 1 (PARP 1), der AP Endonuklease 1 (Ape 1) und des Xeroderma pigmentosum A (XPA) Proteins für die DNA-Reparatur in Säugerzellen.Zunächst wurde der Einfluss der PARP 1-Aktivität auf die Reparatur verschiedener DNA-Modifikationen untersucht. Die Ergebnisse zeigen erstmalig, dass eine Hemmung der PARP-Aktivität nicht nur eine deutliche Verlangsamung der Reparatur von Einzelstrangbrüchen, sondern auch von oxidativen Purinmodifikationen und Pyrimidindimeren zur Folge hat. Interessanterweise erfolgte diese Verlangsamung der DNA-Reparatur nicht in Csb-defizienten Zellen. Diese Ergebnisse deuten darauf hin, dass die Aktivierung der PARP 1 und das Csb-Protein zusammen an einem neuartigen Mechanismus beteiligt sind, der die globale Reparatur verschiedener DNA-Modifikationen beschleunigt.Weiterhin wurde die Bedeutung der Nukleotidexcisionsreparatur als back-up Reparatur von 8 Hydroxyguanin untersucht. Dazu wurden normale und XPA-defiziente Fibroblasten des Menschen mit einem hOgg1-anitsense Konstrukt transfiziert und dann in diesen Zellen die Reparaturkinetiken oxidativer Basenmodifikationen bestimmt. Dadurch konnte eine Beteiligung des XPA-Proteins an diesem Reparaturweg ausgeschlossen werden.Außerdem wurden die Auswirkungen einer AP Endonuklease-1-Überexpression in XRCC1-defizienten Zellen auf die Reparatur von Einzelstrangbrüchen untersucht. Die Reparatur der induzierten Einzelstrangbrüche war in XRCC1-defizienten Zellen erwartungsgemäß deutlich langsamer als in XRCC1-profizienten Zellen. Die Überexpression der AP Endonuklease 1 in XRCC1-defizienten Zellen führte zu einer teilweisen Beschleunigung der Einzelstrangbruchreparatur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit war die Untersuchung, welche Rolle endogen gebildete oxidative DNA-Modifikationen bei der Kanzerogenese spielen. Dazu wurden Cockayne Syndrom B-knockout-Mäuse (Csb-/-), 8-Hydroxyguanin-DNA-Glykosylase-knockout-Mäuse (Ogg1-/-) und Csb-/-/Ogg1-/- Mäuse generiert, die das bakterielle lacI-Gen (Big Blue®) tragen und somit für in vivo Mutationstests eingesetzt werden können. Die Ergebnisse zeigen, dass es in den Lebern der Ogg1-/- Mäuse zu einem 2,1-fachen und in Csb-/-/Ogg1-/- Mäusen zu einem statistisch signifikanten 3,3-fachen Anstieg der Mutationsfrequenz kommt. Die gefundene Erhöhung der Mutationsfrequenz war vor allem auf eine Erhöhung der G:C zu T:A Transversionen zurückzuführen, die typischerweise aus nicht repariertem 8 Hydroxyguanin (8-oxoG) entstehen. Aus mechanistischer Sicht verdeutlichen die Ergebnisse, dass OGG1 das primäre Abwehrsystem gegen oxidative DNA-Modifikationen darstellt und dass das CSB-Protein einen Ausfall von OGG1, selbst in nicht transkribierter DNA, teilweise kompensieren kann. Aus der Korrelation der gefundenen oxidativen DNA-Schäden - bestimmt mittels Alkalischer Elution und der bakteriellen Formamidopyrimidin-DNA-Glykosylase (Fpg-Protein) - mit der Mutationsfrequenz konnte abgeleitet werden, dass bereits weniger als 0,2 Fpg-sensitive DNA-Modifikationen pro 1 Million Basenpaare ausreichen, die spontane Mutationsfrequenz in vivo zu verdoppeln. Zur Untersuchung, welche Rolle die erhöhte Mutationsfrequenz bei der Krebsentstehung spielt, wurden Csb-/-/Ogg1-/- und Wildtyp-Mäuse mit dem Peroxisomenproliferator und spezifischem Leberpromotor WY-14,643 behandelt um spontan initiierte Hepatozyten zur Proliferation anzuregen. Als Endpunkt einer malignen Entartung wurde das Auftreten von Glucose-6-Phosphatase positiven und negativen Läsionen beobachtet. Es zeigte sich, dass Csb-/-/Ogg1-/- Mäuse signifikant mehr enzymveränderte Läsionen in ihren Lebern aufwiesen, als die Wildtyp-Kontrollen. Die Ergebnisse verdeutlichen, dass endogen gebildete oxidative DNA-Modifikationen und daraus resultierende Mutationen grundsätzlich einen erheblichen Anteil zur hohen spontanen Krebsinzidenz in der Bevölkerung leisten könnten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The xeroderma pigmentosum group D (XPD) protein has a dual function, both in nucleotide excision repair of DNA damage and in basal transcription. Mutations in the XPD gene can result in three distinct clinical phenotypes, XP, trichothiodystrophy (TTD), and XP with Cockayne syndrome. To determine if the clinical phenotypes of XP and TTD can be attributed to the sites of the mutations, we have identified the mutations in a large group of TTD and XP-D patients. Most sites of mutations differed between XP and TTD, but there are three sites at which the same mutation is found in XP and TTD patients. Since the corresponding patients were all compound heterozygotes with different mutations in the two alleles, the alleles were tested separately in a yeast complementation assay. The mutations which are found in both XP and TTD patients behaved as null alleles, suggesting that the disease phenotype was determined by the other allele. If we eliminate the null mutations, the remaining mutagenic pattern is consistent with the site of the mutation determining the phenotype.