112 resultados para COALESCENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. Principal Findings: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. Conclusions: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used coalescent analysis of mtDNA cytochrome b (cyt b) sequences to estimate times of divergence of three species of Alouatta-A. caraya, A. belzebul, and A. guariba-which are in close geographic proximity. A. caraya is inferred to have diverged from the A. guariba/A. belzebul clade approximately 3.83 million years ago (MYA), with the later pair diverging approximately 1.55 MYA. These dates are much more recent than previous dates based on molecular-clock methods. In addition, analyses of new sequences from the Atlantic Coastal Forest species A. guariba indicate the presence of two distinct haplogroups corresponding to northern and southern populations with both haplogroups occurring in sympatry within Sao Paulo state. The time of divergence of these two haplogroups is estimated to be 1.2 MYA and so follows quite closely after the divergence of A. guariba and A. belzebul. These more recent dates point to the importance of Pleistocene environmental events as important factors in the diversification of A. belzebul and A. guariba. We discuss the diversification of the three Alouatta species in the context of recent models of climatic change and with regard to recent molecular phylogeographic analyses of other animal groups distributed in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The strawberry poison frog, Oophaga pumilio, has undergone a remarkable radiation of colour morphs in the Bocas del Toro archipelago in Panama. This species shows extreme variation in colour and pattern between populations that have been geographically isolated for < 10,000 years. While previous research has suggested the involvement of divergent selection, to date no quantitative test has examined this hypothesis. Location Bocas del Toro archipelago, Panama. Methods We use a combination of population genetics, phylogeography and phenotypic analyses to test for divergent selection in coloration in O. pumilio. Tissue samples of 88 individuals from 15 distinct populations were collected. Using these data, we developed a gene tree using the mitochondrial DNA (mtDNA) d-loop region. Using parameters derived from our mtDNA phylogeny, we predicted the coalescence of a hypothetical nuclear gene underlying coloration. We collected spectral reflectance and body size measurements on 94 individuals from four of the populations and performed a quantitative analysis of phenotypic divergence. Results The mtDNA d-loop tree revealed considerable polyphyly across populations. Coalescent reconstructions of gene trees within population trees revealed incomplete genotypic sorting among populations. The quantitative analysis of phenotypic divergence revealed complete lineage sorting by colour, but not by body size: populations showed non-overlapping variation in spectral reflectance measures of body coloration, while variation in body size did not separate populations. Simulations of the coalescent using parameter values derived from our empirical analyses demonstrated that the level of sorting among populations seen in colour cannot reasonably be attributed to drift. Main conclusions These results imply that divergence in colour, but not body size, is occurring at a faster rate than expected under neutral processes. Our study provides the first quantitative support for the claim that strong diversifying selection underlies colour variation in the strawberry poison frog.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coalescent theory represents the most significant progress in theoretical population genetics in the past three decades. The coalescent theory states that all genes or alleles in a given population are ultimately inherited from a single ancestor shared by all members of the population, known as the most recent common ancestor. It is now widely recognized as a cornerstone for rigorous statistical analyses of molecular data from population [1]. The scientists have developed a large number of coalescent models and methods[2,3,4,5,6], which are not only applied in coalescent analysis and process, but also in today’s population genetics and genome studies, even public health. The thesis aims at completing a statistical framework based on computers for coalescent analysis. This framework provides a large number of coalescent models and statistic methods to assist students and researchers in coalescent analysis, whose results are presented in various formats as texts, graphics and printed pages. In particular, it also supports to create new coalescent models and statistical methods. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation time of HIV Type 1 (HIV-1) in vivo has previously been estimated using a mathematical model of viral dynamics and was found to be on the order of one to two days per generation. Here, we describe a new method based on coalescence theory that allows the estimate of generation times to be derived by using nucleotide sequence data and a reconstructed genealogy of sequences obtained over time. The method is applied to sequences obtained from a long-term nonprogressing individual at five sampling occasions. The estimate of viral generation time using the coalescent method is 1.2 days per generation and is close to that obtained by mathematical modeling (1.8 days per generation), thus strengthening confidence in estimates of a short viral generation time. Apart from the estimation of relevant parameters relating to viral dynamics, coalescent modeling also allows us to simulate the evolutionary behavior of samples of sequences obtained over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source–sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ancestral polymorphisms and incomplete lineage sorting are commonly used at the population level, increasing reports of these models have been invoked and tested to explain deep radiations. Hypotheses are put forward for ancestral polymorphisms being the likely reason for paraphyletic taxa at the class level in the diatoms based on an ancient rapid radiation of the entire groups. Models for ancestral deep coalescence are invoked to explain paraphyly and molecular evolution at the class level in the diatoms. Other examples at more recent divergences are also documented. Discussion as to whether or not paraphyletic groups seen in the diatoms at all taxonomic levels should be recognized is provided. The continued use of the terms centric and pennate diatoms is substantiated with additional evidence produced to support their use in diatoms both as descriptive terms for both groups and as taxonomic groups for the latter because new morphological evidence from the auxospores justifies the formal classification of the basal and core araphids as new subclasses of pennate diatoms in the Class Bacillariophyceae. Keys for higher levels of the diatoms showing how the terms centrics and araphid diatoms can be defined are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ancestral polymorphisms and incomplete lineage sorting are commonly used at the population level, increasing reports of these models have been invoked and tested to explain deep radiations. Hypotheses are put forward for ancestral polymorphisms being the likely reason for paraphyletic taxa at the class level in the diatoms based on an ancient rapid radiation of the entire groups. Models for ancestral deep coalescence are invoked to explain paraphyly and molecular evolution at the class level in the diatoms. Other examples at more recent divergences are also documented. Discussion as to whether or not paraphyletic groups seen in the diatoms at all taxonomic levels should be recognized is provided. The continued use of the terms centric and pennate diatoms is substantiated with additional evidence produced to support their use in diatoms both as descriptive terms for both groups and as taxonomic groups for the latter because new morphological evidence from the auxospores justifies the formal classification of the basal and core araphids as new subclasses of pennate diatoms in the Class Bacillariophyceae. Keys for higher levels of the diatoms showing how the terms centrics and araphid diatoms can be defined are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.