959 resultados para CO-INFECTION
Resumo:
Background Animal and human infection with multiple parasite species is the norm rather than the exception, and empirical studies and animal models have provided evidence for a diverse range of interactions among parasites. We demonstrate how an optimal control strategy should be tailored to the pathogen community and tempered by species-level knowledge of drug sensitivity with use of a simple epidemiological model of gastro-intestinal nematodes. Methods We construct a fully mechanistic model of macroparasite co-infection and use it to explore a range of control scenarios involving chemotherapy as well as improvements to sanitation. Results Scenarios are presented whereby control not only releases a more resistant parasite from antagonistic interactions, but risks increasing co-infection rates, exacerbating the burden of disease. In contrast, synergisms between species result in their becoming epidemiologically slaved within hosts, presenting a novel opportunity for controlling drug resistant parasites by targeting co-circulating species. Conclusions Understanding the effects on control of multi-parasite species interactions, and vice versa, is of increasing urgency in the advent of integrated mass intervention programmes.
Resumo:
BACKGROUND Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. METHODS Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. RESULTS Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. CONCLUSIONS Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.
Resumo:
In one of our recent studies, two HCV genotype 6 variants were identified in patients from Hong Kong and Guangxi in southern China, with injection drug use and HIV-1 co-infection. We report the complete genomic sequences for these two variants: GX004 and
Resumo:
Co-infection of two viruses has been observed in mandarin fish (Siniperca chuatsi), but the two viruses have not been characterized. In this study, a rhabdovirus has been isolated from the co-infected two viruses extracted from the diseased mandarin fish, and its morphological structure and partial biochemical and biophysical characteristics have been observed and analyzed. The isolated rhabdovirus has a typical bullet shape, and is therefore called S. chttatsi rhabdovirus (SCRV). And, the isolated rhabdovirus produced a higher titer (10(8.5) TCID50 ml(-1)) than did the co-infecting viruses (10(6.5) TCID50 ml(-1)). Subsequently, the viral genome RNA was extracted, and used as template to clone the complete nucleoprotein (N) gene by RT-PCR amplification. Cloning and sequencing of the SCRV N protein revealed 42%-31% amino acid identities to that of trout rhabdovirus 903/87 and the rhabdoviruses in genus Vesiculovirus. SDS-PAGE separation of the isolated SCRV and other two rhabdoviruses also revealed obvious polypeptide profile difference. Moreover, the anti-SCRV N protein antibody was prepared, and the anti-SCRV N protein antibody only could recognize the SCRV N protein, whereas no antigenicity was detected in other two rhabdoviruses. The data suggested that the SCRV should be a rhabdovirus member related to the genus Vesiculovirus in the Rhabdoviridae. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Le circovirus porcin de type 2 (PCV2) est un pathogène majeur pour l’industrie porcine et est associé à une longue liste de maladies associées au circovirus porcin (MACVP). Les premières tentatives pour reproduire ces maladies ont montré que le virus doit être combiné à d’autres agents pathogènes du porc ou à différents stimulants du système immunitaire. De ces agents, le virus du syndrome reproducteur et respiratoire porcin (VSRRP) est celui qui est le plus souvent co-isolé avec le PCV dans les fermes. Une grande partie des efforts faits pour étudier les interactions entre ces deux virus ont été menés in vivo. Les interactions in vitro ont jusqu’à maintenant été peu étudiées du fait qu’il n’existe pas de modèle cellulaire permettant la réplication efficace des deux virus. L’objectif de ce projet était donc de développer un modèle cellulaire propice à la réplication des deux virus et d’étudier leur interaction en co-infection. Une lignée cellulaire provenant de la trachée d’un porcelet nouveau-né (NPTr), permissive au PCV, a été génétiquement modifiée pour exprimer la protéine CD163, un récepteur majeur du VSRRP. Ce projet a montré que cette nouvelle lignée cellulaire (NPTr-CD163) est permissive au VSRRP ainsi qu’à plusieurs génotypes de PCV (PCV1, PCV2a, PCV2b et PCV1/2a). De plus, les résultats obtenus lors d’infections mixtes suggèrent que la réplication du VSRRP et du PCV conditionne de façon génotype-dépendante celle du PCV puisque la réplication du PCV1 est inhibée en présence de VSRRP, alors que celle du PCV2b est significativement augmentée dans les mêmes conditions. Ni la mortalité cellulaire, ni la réponse cellulaire en cytokines n’a permis d’expliquer ces résultats. La modulation de la réplication du PCV par le VSRRP serait donc liée à un mécanisme spécifique qui demeure inconnu. De plus, cet effet varierait en fonction du génotype de PCV.
Resumo:
Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a 'decision' of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Relata-se, pela primeira vez no Brasil, a ocorrência de mastite gangrenosa caprina atípica causada pela co-infecção por Staphylococcus aureus, Clostridium perfringens e Escherichia coli em uma cabra da raça Boer, na segunda semana de lactação. Descrevem-se os achados clínicos, os procedimentos de diagnóstico microbiológico e a conduta terapêutica.
Resumo:
The purpose of this study was to determine the serological and molecular prevalence of Bartonella spp. infection in a sick dog population from Brazil. At the São Paulo State University Veterinary Teaching Hospital in Botucatu, 198 consecutive dogs with clinicopathological abnormalities consistent with tick-borne infections were sampled. Antibodies to Bartonella henselae and Bartonella vinsonii subsp. berkhoffii were detected in 2.0% ( 4/197) and 1.5% ( 3/197) of the dogs, respectively. Using 16S-23S rRNA intergenic transcribed spacer ( ITS) primers, Bartonella DNA was amplified from only 1/198 blood samples. Bartonella seroreactive and/or PCR positive blood samples ( n = 8) were inoculated into a liquid pre-enrichment growth medium ( BAPGM) and subsequently sub-inoculated onto BAPGM/blood-agar plates. PCR targeting the ITS region, pap31 and rpoB genes amplified B. henselae from the blood and/or isolates of the PCR positive dog ( ITS: DQ346666; pap31 gene: DQ351240; rpoB: EF196806). B. henselae and B. vinsonii subsp. berkhoffii ( pap31: DQ906160; rpoB: EF196805) co-infection was found in one of the B. vinsonii subsp. berkhoffii seroreactive dogs. We conclude that dogs in this study population were infrequently exposed to or infected with a Bartonella species. The B. henselae and B. vinsonii subsp. berkhoffii strains identified in this study are genetically similar to strains isolated from septicemic cats, dogs, coyotes and human beings from other parts of the world. To our knowledge, these isolates provide the first Brazilian DNA sequences from these Bartonella species and the first evidence of Bartonella co-infection in dogs.
Resumo:
In Brazil, the rates of mother-to-child-transmission (MTCT) of human immunodeficiency virus (HIV) decreased from 20% to 1-2% in some regions. However, the country contains 90% of individuals infected with visceral leishmaniasis (VL) in Latin America, and the west region of São Paulo state faces an alarming expansion of the disease. We describe the epidemiological aspects of the expanding infection of VL and a case report of an HIV-VL-co-infected child from the west region of São Paulo state. The patient was an AIDS-C3 with low levels of CD4, high viral load, severe diarrhea, oral and perineal candidiasis, severe thrombocytopenia, and protein-caloric malnourishment. She evolved with sepsis, renal and cardiac failure. An rK rapid diagnosis test, indirect fluorescent antibody test (IFAT), and bone marrow aspirate were performed for VL. Her symptoms improved significantly after liposomal amphotericin B administration. From the 45 municipalities that compose the Regional Health Department of Presidente Prudente, Lutzomyia longipalpis vectors were found in 58% of them. VL infected dogs were found in 33% of those municipalities, infected dogs and humans were found in 29%, 20% are starting and 33% of the municipalities are preparing VL investigation. It is likely, in this patient, that VL advanced the clinical progression of the HIV disease and the development of AIDS severity. Supported by favorable conditions, the region becomes a new frontier of VL in Brazil. © 2013.
HEV infection in swine from Eastern Brazilian Amazon: Evidence of co-infection by different subtypes
Resumo:
Hepatitis E virus (HEV) is a fecal-orally transmitted member of the genus Hepevirus that causes acute hepatitis in humans and is widely distributed throughout the world. Pigs have been reported as the main source of genotypes 3 and 4 infection to humans in non-endemic areas. To investigate HEV infection in pigs from different regions of Para state (Eastern Brazilian Amazon), we performed serological and molecular analyses of serum, fecal and liver samples from 151 adult pigs slaughtered between April and October 2010 in slaughterhouses in the metropolitan region of Belem, Para. Among the animals tested, 8.6% (13/151) were positive for anti-HEV IgG but not for anti-HEV IgM. HEV RNA was detected in 4.8% (22/453) of the samples analyzed and 9.9% (15/151) of the animals had at least one positive sample. Phylogenetic analysis showed that all sequences belonged to genotype 3 that were related to human isolates from other non-endemic regions, suggesting that the isolates had zoonotic potential. Subtypes 3c and 3f were simultaneously detected in some pigs, suggesting co-infection by more than one strain and/or the presence of a recombinant virus. These results constitute the first molecular and serologic evidence of swine HEV circulation in the Eastern Brazilian Amazon. (C) 2012 Elsevier Ltd. All rights reserved.