999 resultados para CO-EXTRUSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate histologically the root surfaces of teeth submitted to orthodontic and surgical extrusion procedures in a dog model. Eighteen adult male dogs, divided into six groups of three dogs each, were used in the study Each animal underwent two procedures: rapid orthodontic extrusion and surgical extrusion of the maxillary lateral incisors. The animals were sacrificed to produce samples at 7, 14, 45, 90, 120, and 180 days after surgery for assessment of cross sections of the coronal, medial, and apical thirds of the treated teeth. At early time points, some active surface and inflammatory resorption was observed exclusively in the surgical extrusion group; however, samples collected at later times demonstrated functional repair of the resorption gaps in both groups. Ankylosis was observed as a minor event and was apparently of a transient nature in samples of the surgical extrusion group. The results demonstrate the importance of maintaining the periodontal ligament and cementum surface; both are vital for the prevention of root resorption. It may be postulated that orthodontic extrusion is more conservative and physiologic than surgical extrusion; however the results showed that function was restored in both groups. (Int J Periodontics Restorative Dent 2009;29:435-443.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal degradation upon melting is one of the major drawbacks reported for polyhydroxyalkanoates (PHA). However, the role of residues originating from the fermentation and the extraction steps on the thermal stability of this class of biopolymers still needs to be clarified. In the particular case of PHA produced from mixed microbial cultures (MMC), this topic is even less documented in the literature. Here, two polyhydroxy(butyrate-co-valerate) (PHBV) produced from MMC enriched in PHA accumulating organisms and fed with cheese whey were studied. A micro extrusion line is used to produce filaments and assess the processability and the degradation of processed PHBV. The prototype micro extrusion line allows for studying grams of materials. The two PHBV contain 18 mol% HV. PHBV was recovered with 11 wt% residues, and further submitted to a purification procedure resulting in a second biopolyester containing less than 2 wt% impurities. The thermorheological characterization of the two PHBV is first presented, together with their semicrystalline properties. Then the processing windows of the two biopolyesters are presented. Finally, the properties of extruded filaments are reported and the thermomechanical degradation of PHBV is extensively studied. The structure was assessed by wide angle X-ray diffraction, mechanical and rheological properties are reported, thermal properties are studied with differential scanning calorimetry and thermogravimetric analysis, whereas Fourier Transform Infrared spectroscopy was used to assess the impact of the extrusion on PHBV chemical structure. All results obtained with the two PHBV are compared to assess the effects of residues on both PHBV processability and degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-biocomposites based on a biodegradable bacterial copolyester, poly(hydroxybutyrate-co-hydroxyvalerate), have been elaborated with an organo-modified montmorillonite (OMMT) clay as nanofiller, and acetyl tributyl citrate as plasticizer. The corresponding (nano)structures, thermal and mechanical properties, permeability, and biodegradability have been determined. Polyhydroxyalkanoates are very thermal sensitive then to follow the degradation the corresponding matrices have been analyzed by size exclusion chromatography. The results indicate that the addition of the plasticizer decreases the thermo-mechanical degradation, during the extrusion. These nano-biocomposites show an intercalated/exfoliated structure with good mechanical and barrier properties, and an appropriated biodegradation kinetic. Intending to understand the changes in the thermal properties, the nano-biocomposites were characterized by thermal gravimetric analysis and differential scanning calorimetry. The presence of the OMMT clay did not influence significantly the transition temperatures. However, the filler not only acted as a nucleating agent which enhanced the crystallization, but also as a thermal barrier, improving the thermal stability of the biopolymer. The results indicated that the addition of the plasticizer reduces the glass transition temperature and the crystalline melting temperature. The plasticizer acts as a processing aid and increases the processing temperature range (lower melting temperature).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay-containing nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS-MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X-ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS-MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS-MA promoted the formation of composites containing relatively large micron-sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS-MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copolymer poly (L-co-D,L lactic acid), PLDLA, has gained prominence in the field of temporary prostheses due to the fact that their time of degradation is quite compatible with the requirement in the case of osseous fracture. In this work the in vivo degradation of devices from copolymer, as a system of plates and screws, used in fixation of the tibia of rabbits was studied. The devices were implanted in 15 adult rabbits, albinos, New Zealand race, and they were used as control devices of alloys of titanium (Ti-6Al-4V/ V grade). The use of copolymers, synthesized in the laboratory, was tested in the repair of fracture in rabbits'tibias, being assessed in the following times: 2 weeks, 2 months and 3 months. Morphological analysis of tissue surrounding the plate and screw system, for 2 weeks of implantation, showed the presence of osteoblasts, indicating a pre bone formation. After 2 months there was new bone formation in the region in contact with the polymer. This bone growth occurred simultaneously with the process of PLDLA degradation, invading the region where there was polymer and after 3 months there was an intense degradation of the copolymer and hence greater tissue invasion compared to 2 months which characterized bone formation in a region where the polymer degraded. The in vivo degradation study of the devices for PLDLA by means of histological evaluations during the period of consolidation of the fracture showed the efficiency of plate and screw system, and it was possible to check formation of bone tissue at the implantation site, without the presence of inflammatory reaction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the positive temperature coefficient of resistivity (PTCR) in Er3+ and Ca2+ co-doped ferroelectric BaTiO3 was studied in this work, with Er3+ being used to act as a donor doping. Irrespective of all the materials showing high densities after sintering at 1200 to 1300 ºC, these revealed insulator at the lowest sintering temperature, changing to semiconducting and PTCR-type materials only when the sintering temperature was further increased. Observations from X-ray diffraction help correlating this effect with phase development in this formulated (Ba,Ca,Er)TiO3 system, considering the formation of initially two separated major (Ba,Ca)TiO3- and minor (Ca,Er)TiO3-based compounds, as a consequence of cation size-induced stress energy effects. Thus, appearance and enhancement here of the semiconducting and PTCR responses towards higher sintering temperatures particularly involve the incorporation of Er3+ into the major phase, rendering finally possible the generation and "percolative-like" migration of electrons throughout the whole material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is investigated in the present contribution the oscillatory co-electrodeposition of CuSn on a polycrystalline gold surface in the presence of Triton X-100 surfactant and citric acid as additive, in acidic media. The experiments were conducted under potentiostatic control and the system dynamics characterized in terms of the morphology and stability of the current oscillations. Besides modulations in the frequency and amplitude of the current oscillations, several patterned states were observed, including relaxation-like and mixed mode oscillations. The oscillations were found to be very robust and some time series presented regular motions up to about two hours.