35 resultados para CMCase
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aims to compare yield and quality of pequi pulp oil when applying two distinct processes: in the first, pulp drying in a tray dryer at 60ºC was combined with enzymatic treatment and pressing to oil extraction; in the second, a simple process was carried out by combining sun-drying pulp and pressing. In this study, raw pequi fruits were collected in Mato Grosso State, Brazil. The fruits were autoclaved at 121ºC and stored under refrigeration. An enzymatic extract with pectinase and CMCase activities was used for hydrolysis of pequi pulp, prior to oil extraction. The oil extractions were carried out by hydraulic pressing, with or without enzymatic incubation. The oil content in the pequi pulp (45% w/w) and the physicochemical characteristic of the oil was determined according to standard analytical methods. Free fatty acids, peroxide values, iodine and saponification indices were respectively 1.46 mgKOH/g, 2.98 meq/kg, 49.13 and 189.40. The acidity and peroxide values were lower than the obtained values in commercial oil samples, respectively 2.48 mgKOH/g and 5.22 meq/kg. Aqueous extraction has presented lower efficiency and higher oxidation of unsaturated fatty acids. On the other hand, pequi pulp pressing at room temperature has produced better quality oil. However its efficiency is still smaller than the combined enzymatic treatment and pressing process. This combined process promotes cellular wall hydrolysis and pulp viscosity reduction, contributing to at least 20% of oil yield increase by pressing.
Resumo:
Oitenta fungos filamentosos isolados do solo da Mata Atlântica da região conhecida como Banhado Grande, Estação Ecológica de Juréia-Itatins, São Paulo, Brasil, foram analisados para avaliar seus potenciais quanto a produção de celulases em resposta à presença de celulose, como única fonte de carbono, em meio de cultura. Foi utilizada a técnica de coloração com vermelho congo e determinada a atividades da celulase em papel de filtro (FPase) e em carboximetilcelulose (CMCase). Os fungos foram diferenciados quanto à atividade dessas enzimas, pois tais atividades variaram em relação ao tipo de substrato e à metodologia aqui utilizados. A melhor atividade CMCase (1,64 U) foi obtida com o cultivo de Trichoderma harzianum (V) em meio de farelo de trigo após cultivo por 4 dias, a 25 ºC. Os resultados obtidos não forneceram evidências para diferenciar qualquer linhagem que tivesse melhor atividade da celulase em relação às demais. Contudo, sugerem que estudos mais detalhados com as linhagens de Trichoderma: T. harzianum III e V, T. inhamatum I, T. longibrachiatum, T. pseudokoningii II e T. viride I, serão necessários para avaliar se estas são potencialmente boas produtoras de celulase, sob condições adequadas de cultivo.
Resumo:
A study was conducted to assess the effect of condensed tannins on the activity of fibrolytic enzymes from the anaerobic rumen fungus, Neocallimastix hurleyensis and a recombinant ferulic acid esterase (FAE) from the aerobic fungus Aspergillus niger. Condensed tannins were extracted from the tropical legumes Desmodium ovalifolium, Flemingia macrophylla, Leucaena leticocephala, Leucaena pallida, Calliandra calothyrsus and Clitoria fairchildiana and incubated in fungal enzyme mixtures or with the recombinant FAE. In most cases, the greatest reductions in enzyme activities were observed with tannins purified from D. ovalifolium and F macrophylla and the least with tannins from L leucocephala. Thus, whereas 40 mu g ml(-1) of condensed tannins from C. calothyrsus and L. leucocephala were needed to halve the activity of N. hurleyensis carboxymethylcellulase (CMCase), just 5.5 mu g ml(-1) of the same tannins were required to inhibit 50% of xylanase activity. The beta-D-glucosidase and beta-D-Xylosidase enzymes were less sensitive to tannin inhibition and concentrations greater than 100 mu g ml(-1) were required to reduce their activity by 50%. In other assays, the inhibitory effect of condensed tannins when added to incubation mixtures containing particulate substrates (the primary cell walls of E arundinacea) or when bound to these substrate was compared. Substrate-associated tannins were more effective in preventing fibrolytic activities than tannins added directly to incubations solutions. It was concluded that condensed tannins from tropical legumes can inhibit fibrolytic enzyme activities, although the extent of the effect was dependent on the tannin, the nature of its association with the substrate and the enzyme involved. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase) and glutamate dehydrogenase (GDH). In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN) and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp.) ad libitum. The treatments consisted of control (no supplementation), supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1) and supplementation with protein (albumin). In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
Cellulolytic enzymatic broth by Trichoderma reesei ATCC 2768 cultived in shaker using cashew apple bagasse and coconut shell bagasse, as substrate for fermentation, was used to investigate the enzymatic hydrolysis of these substrates after pre-treatment with 1 M NaOH, wet-oxidation as well as a combination of these treatments. Hydrolysis runs were carried at 125 rpm, 50ºC and initial pH of 4.8 for 108 hours. Enzymatic broth produced using cashew apple bagasse treated with 1M NaOH (1.337 UI/mL CMCase and 0.074 UI/mL FPase), showed after the hydrolysis an initial of 0.094 g of reducing sugar/g of substrate.h with 96% yield of total reducing sugars while for the coconut shell bagasse treated using the alkaline process (0.640 UI/mL CMCase and 0.070 UI/mL FPase) exhibited an initial hydrolysis velocity of 0.025 g of reducing sugar/g of substrate.h with 48% yield of total reducing sugars. For the treatment with wet-oxidation using cashew apple bagasse as substrate enzymatic broth (0.547 UI/mL CMCase) exhibited an initial hydrolysis velocity of 0.014 g of reducing sugars/g of substrate.h with a lower yield about 89% of total reducing sugars compared to the alkaline treatment. Enzymatic broth produced using coconut shell treated by wet-oxidation showed an initial hydrolysis velocity of 0.029 g of reducing sugar/g of substrate.h with 91% yield. However, when the combination of these two treatments were used it was obtained an enzymatic broth of 1.154 UI/mL CMCase and 0.107 FPase for the cashew apple bagasse as well as 0.538 UI/mL CMCase and 0,013 UI/mL de FPase for the coconut shell bagasse. After hydrolysis, initial velocity was 0.029 g of reducing sugar/g of substrate.h. with 94% yield for the cashew apple bagasse and 0.018 g de reducing sugar/g of substrate.h with 69% yield for coconut shell bagasse. Preliminary treatment improves residues digestibility showing good yields after hydrolysis. In this case, cellulose from the residue can be converted into glucose by cellulolytic enzymes that can be used for ethanol production
Resumo:
The production of enzymes by microorganisms using organic residues is important and it can be associated with several applications such as food and chemical industries and so on. The objective of this work is the production of CMCase, Xylanase, Avicelase and FPase enzymes by solid state fermentation (SSF) using as substrates: bagasse of coconut and dried cashew stem. The microorganisms employed are Penicillium chrysogenum and an isolated fungus from the coconut bark (Aspergillus fumigatus). Through the factorial design methodology and response surface analysis it was possible to study the influence of the humidity and pH. For Penicillium chrysogenum and the isolated fungus, the coconut bagasse was used as culture medium. In another fermentation, it was used the mixture of coconut bagasse and cashew stem. Fermentations were conducted using only the coconut bagasse as substrate in cultures with Penicillium chrysogenum fungus and the isolated one. A mixture with 50% of coconut and 50% of cashew stem was employed only for Penicillium chrysogenum fungus, the cultivation conditions were: 120 hours at 30 °C in BOD, changing humidity and pH values. In order to check the influence of the variables: humidity and pH, a 2 2 factorial experimental design was developed, and then two factors with two levels for each factor and three repetitions at the central point. The levels of the independent variables used in ascending order (-1, 0, +1), to humidity, 66%, 70.5% and 75% and pH 3, 5 and 7, respectively. The software STATISTICA TM (version 7.0, StatSoft, Inc.) was used to calculate the main effects of the variables and their interactions. The response surface methodology was used to optimize the conditions of the SSF. A chemical and a physic-chemical characterization of the coconut bagasse have determined the composition of cellulose (%) = 39.09; Hemicellulose (%) = 23.80, Total Lignin (%) = 36.22 and Pectin (%) = 1.64. To the characterization of cashew stem, the values were cellulose (g) = 15.91 Hemicellulose (%) = 16.77, Total Lignin (%) = 30.04 and Pectin (%) = 15.24. The results indicate the potential of the materials as substrate for semisolid fermentation enzyme production. The two microorganisms used are presented as good producers of cellulases. The results showed the potential of the fungus in the production of CMCase enzyme, with a maximum of 0.282 UI/mL and the Avicelase enzyme the maximum value ranged from 0.018 to 0.020 UI/ mL, using only coconut bagasse as substrate. The Penicillium chrysogenum fungus has showed the best results for CMCase = 0.294 UI/mL, FPase = 0.058 UI/mL, Avicelase = 0.010 UI/mL and Xylanase = 0.644 UI/ mL enzyme, using coconut bagasse and cashew stem as substrates. The Penicllium chrysogenum fungus showed enzymatic activities using only the coconut as substrate for CMCase = 0.233 UI/mL, FPase = 0.031 to 0.032 UI/ mL, Avicelase = 0.018 to 0.020 UI/mL and Xylanase = 0.735 UI/ mL. Thus, it can be concluded that the used organisms and substrates have offered potential for enzyme production processes in a semi-solid cultivation
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to obtain cellulases that improve the detergency of laundry detergent products, two alkalophilic microorganims, Bacillus sp B38-2 and Streptomyces sp S36-2, were isolated from soil and compost by incubating samples in enrichment culture medium containing CMC and Na2CO3 at pH9.6. It was found that they secrete a constitutive extracellular alkaline carboxymethyl cellulase (CMCase) in high quantity. The maximum enzyme activity was observed between 48hr to 72 hr at 30-degrees-C for the Streptomyces and between 72hr to 96hr at 35-degrees-C for the Bacillus. The optimum pH and temperature of the crude enzyme activities ranged from 6.0 to 7.0 at 55-degrees-C for the Streptomyces and 7.0 to 8.0 at 60-degrees-C for the Bacillus. Two crude CMCases activities were termostable at 45-degrees-C for 1hr and the both crude enzyme activities of the Bacillus as of the Streptomyces were stable at pH 5.0 to 9.0 after pH treatments in various buffer solutions at 30-degrees-C for 24hr.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)