9 resultados para CLN3
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
Neurodegenerative disorders are chronic, progressive, and often fatal disorders of the nervous system caused by dysfunction, and ultimately, death of neuronal cells. The underlying mechanisms of neurodegeneration are poorly understood, and monogenic disorders can be utilised as disease models to elucidate the pathogenesis. Juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease) is a recessively inherited lysosomal storage disorder with progressive neurodegeneration and accumulation of autofluorescent storage material in most tissues. It is caused by mutations in the CLN3 gene; however, the exact function of the corresponding CLN3 protein, as well as the molecular mechanisms of JNCL pathogenesis have remained elusive. JNCL disease exclusively affects the central nervous system leaving other organs unaffected, and therefore it is of a particular importance to conduct studies in brain tissue and neuronal cells. The aim of this thesis project was to elucidate the molecular and cell biological mechanisms underlying JNCL. This was the first study to describe the endogenous Cln3 protein, and it was shown that Cln3 localised to neuronal cells in the mouse brain. At a subcellular level, endogenous Cln3 was localised to the presynaptic terminals and to the synaptosome compartment, but not to the synaptic vesicles. Studies with the CLN3-deficient cells demonstrated an impaired endocytic membrane trafficking, and established an interconnection between CLN3, microtubulus-binding Hook1 and Rab proteins. This novel data was not only important in characterising the roles of CLN3 in cells, but also provided significant information delineating the versatile role of the Rab proteins. To identify affected cellular pathways in JNCL, global gene expression profiling of the knock-out mouse Cln3-/- neurons was performed and systematically analysed; this revealed a slight dysfunction of the mitochondria, cytoskeletal abnormality in the microtubule plus-end, and an impaired recovery from depolarizing stimulus when specific N-type Ca2+ channels were inhibited, thus leading to a prolonged time of higher intracellular calcium. All these defective pathways are interrelated, and may together be sufficient to initiate the neurodegenerative process. Results of this thesis also suggest that in neuronal cells, CLN3 most likely functions at endocytic vesicles at the presynaptic terminal, potentially involved in the regulation of the calcium-mediated synaptic transmission.
Resumo:
The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic seizures, psychomotor regression and ataxia. Different disorders have been classified as PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity that has onset in childhood, being the most common cause of neurodegeneration in children. The primary aim of this thesis was to dissect the molecular genetic background of patients with childhood onset PME by studying candidate genes and attempting to identify novel PME-associated genes. Another specific aim was to study the primary protein properties of the most recently identified member of the NCL-causing proteins, MFSD8. To dissect the genetic background of a cohort of Turkish patients with childhood onset PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which together with 56 mutations found by collaborators raised the total number of known NCL mutations to 364. Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had originally been identified in a subset of mainly Turkish patients as the underlying cause of CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients from nine different countries were provided with a CLN7 molecular diagnosis, denoting the wide geographical occurrence of MFSD8 defects. The mutations are private with only one having been established by a founder-effect in the Roma population from the former Czechoslovakia. All mutations identified except one are associated with the typical clinical picture of variant late-infantile NCL. To address the trafficking properties of MFSD8, lysosomal targeting of the protein was confirmed in both neuronal and non-neuronal cells. The major determinant for this lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes the direct trafficking pathway en route to the lysosomes. Expression studies revealed the neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer as the predominant regions in which MFSD8 is expressed. To identify novel genes associated with childhood onset PME, a single nucleotide polymorphism (SNP) genomewide scan was performed in three small families and 18 sporadic patients followed by homozygosity mapping to determine the candidate loci. One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene that had previously been shown to cause infantile neuroaxonal dystrophy. Application of next-generation sequencing of candidate regions in the remaining two families led to identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 were reported to have early onset PME, rapid disease progression leading to dementia and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and the clinical delineation of their phenotype establish KCTD7 as a gene for early onset PME. The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly associated with childhood onset symptomatic epilepsy. The disease-associated role of TXNDC6 awaits verification through identification of additional mutations in patients with similar phenotypes. Completion of the genetic spectrum underlying childhood onset PMEs and understanding of the gene products functions will comprise important steps towards understanding the underlying pathogenetic mechanisms, and will possibly shed light on the general processes of neurodegeneration and nervous system regulation, facilitating the diagnosis, classification and possibly treatment of the affected cases.
Resumo:
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Resumo:
Le tri et le transport efficace des hydrolases acides vers le lysosome jouent un rôle critique pour la fonction des cellules. Plus de 50 maladies humaines sont dues à des mutations des enzymes lysosomales, des protéines régulant des processus-clés du transport vers le lysosome ou des enzymes effectuant des modifications posttraductionnelles importantes pour la fonction du lysosome. L’objectif de cette thèse est d’identifier des protéines et des mécanismes permettant à la cellule de réguler le transport des enzymes vers le lysosome. Nous avons formulé l’hypothèse que des protéines mutées dans des maladies lysosomales et dont les fonctions étaient inconnues pouvaient jouer un rôle dans le transport vers le lysosome. Les céroïdes-lipofuscinoses neuronales forment une famille de maladies lysosomales rares mais sont aussi les maladies neurodégénératives infantiles les plus fréquentes. Plusieurs gènes impliqués dans les NCL encodent des protéines aux fonctions inconnues. Les travaux présentés dans cette thèse ont identifié la protéine « ceroid lipofuscinosis neuronal-5 » (CLN5) qui est localisée à l’endosome et au lysosome comme élément nécessaire au recrutement et à l’activation de rab7. Rab7 est une protéine Rab-clé qui contrôle le trafic à l’endosome tardif. Cette petite GTPase est impliquée dans le recrutement de retromer, un complexe protéique qui régule le trafic de l’endosome vers l’appareil de Golgi des récepteurs de tri lysosomal comme sortilin et le récepteur du mannose-6-phosphate. Dans les cellules où CLN5 est déplété, les récepteurs de tri lysosomal sont moins recyclés plus rapidement dégradés. En utilisant des expériences de photomarquage nous avons aussi pu démontrer que Rab7 est moins activées en l’absence de CLN5. Pour exécuter leur fonction les protéines rabs doivent être recrutée à la membrane et activées par l’échange d’une molécule de GDP pour une molécule de GTP. Le recrutement des Rabs à la membrane nécessite une modification posttraductionnelle lipidique pour être facilités. En utilisant un modèle de levures nous avons démontré que l’homologue de Rab7, Ypt7 est palmitoylée. Nous avons aussi démontré que la palmitoyltransférase Swif1 est nécessaire au recrutement de Ypt7 à la membrane. Nous avons aussi remarqué que les sous- unités de retromer chez la levure sont moins recrutées lorsque les palmitoyltransférases sont déplétées. Dans les cellules de mammifères nous avons démontré que Rab7 est également palmitoylé et que cette palmitoylation est possiblement effectuée par les palmitoyltransférases DHHC1 et DHHC8. La palmitoylation de Rab7 a lieu sur les cystéines en C-terminal qui sont nécessaires au recrutement membranaire et qui auparavant étaient uniquement décrites comme prénylées. En utilisant la méthode de « click chemistry » nous avons découvert que lorsque la prénylation de Rab7 est bloquée le niveau de palmitoylation augmente. Pour caractériser l’interaction entre CLN5 et Rab7 nous avons performé des expériences afin d’établir définitivement la topologie de cette protéine. Nous avons ainsi démontré que CLN5 est une protéine hautement glycosylée qui est initialement traduite en protéine transmembranaire et subséquemment clivée par un membre de la famille des peptidase de peptide signal (SPP). Cette protéine soluble peut alors possiblement interagir avec CLN3 qui est aussi palmitoylée pour recruter et activer Rab7. Nos études suggèrent pour la première fois que CLN5 pourrait être un recruteur et un activateur de Rab7 qui agirait avec la protéine CLN3 pour séquestrer Rab7 avec les autres récepteurs palmitoylés et permettre leur recyclage vers l’appareil de Golgi.
Resumo:
Although the CLN3 gene for Batten disease, the most common inherited neurovisceral storage disease of childhood, was identified in 1995, the function of the corresponding protein still remains elusive. We previously cloned the Saccharomyces cerevisiae homologue to the human CLN3 gene, designated BTN1, which is not essential and whose product is 39% identical and 59% similar to Cln3p. We report that btn1-Δ deletion yeast strains are more resistant to d-(−)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (denoted ANP), a phenotype that is complemented in yeast by the human CLN3 gene. Furthermore, the severity of Batten disease in humans and the degree of ANP resistance in yeast are related when the equivalent amino acid replacements in Cln3p and Btn1p are compared. These results indicate that yeast can be used as a model for the study of Batten disease.
Resumo:
In higher eukaryotes, translation of some mRNAs occurs by internal initiation. It is not known, however, whether this mechanism is used to initiate the translation of any yeast mRNAs. In this report, we identify naturally occurring nucleotide sequences that function as internal ribosome entry sites (IRESes) within the 5′ leader sequences of Saccharomyces cerevisiae YAP1 and p150 mRNAs. When tested in the 5′ untranslated regions of monocistronic reporter genes, both leader sequences enhanced translation efficiency in vegetatively growing yeast cells. Moreover, when tested in the intercistronic region of dicistronic mRNAs, both sequences were shown to contain IRESes that functioned in living cells. The activity of the p150 leader was much greater than that of the YAP1 leader. The second cistron was not expressed in control dicistronic constructs that lacked these sequences or contained the 5′ leader sequence of the CLN3 mRNA in the intercistronic region. Further analyses of the p150 IRES revealed that it contained several nonoverlapping segments that were able independently to mediate internal initiation. These results suggested a modular composition for the p150 IRES that resembled the composition of IRESes contained within some cellular mRNAs of higher eukaryotes. Both YAP1 and p150 leaders contain several complementary sequence matches to yeast 18S rRNA. The findings are discussed in terms of our understanding of internal initiation in higher eukaryotes.
Resumo:
In yeast, commitment to cell division (Start) is catalyzed by activation of the Cdc28 protein kinase in late G1 phase by the Cln1, Cln2, and Cln3 G1 cyclins. The Clns are essential, rate-limiting activators of Start because cells lacking Cln function (referred to as cln-) arrest at Start and because CLN dosage modulates the timing of Start. At or shortly after Start, the development of B-type cyclin Clb-Cdc28 kinase activity and initiation of DNA replication requires the destruction of p40SIC1, a specific inhibitor of the Clb-Cdc28 kinases. I report here that cln cells are rendered viable by deletion of SIC1. Conversely, in cln1 cln2 cells, which have low CLN activity, modest increases in SIC1 gene dosage cause inviability. Deletion of SIC1 does not cause a general bypass of Start since (cln-)sic1 cells remain sensitive to mating pheromone-induced arrest. Far1, a pheromone-activated inhibitor of Cln-Cdc28 kinases, is dispensable for arrest of (cln-)sic1 cells by pheromone, implying the existence of an alternate Far1-independent arrest pathway. These observations define a pheromone-sensitive activity able to catalyze Start only in the absence of p40SIC1. The existence of this activity means that the B-type cyclin inhibitor p40SIC1 imposes the requirement for Cln function at Start.