941 resultados para CLIFFORD TORUS
Resumo:
In this paper are given examples of tori T(2) embedded in R(3) with all their principal lines dense. These examples are obtained by stereographic projection of deformations of the Clifford torus in S(3). (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
We provide a characterization of the Clifford Torus in S(3) via moving frames and contact structure equations. More precisely, we prove that minimal surfaces in S(3) with constant contact angle must be the Clifford Torus. Some applications of this result are then given, and some examples are discussed.
Resumo:
It is well known that space-time block codes (STBCs) obtained from orthogonal designs (ODs) are single-symbol decodable (SSD) and from quasi-orthogonal designs (QODs) are double-symbol decodable (DSD). However, there are SSD codes that are not obtainable from ODs and DSD codes that are not obtainable from QODs. In this paper, a method of constructing g-symbol decodable (g-SD) STBCs using representations of Clifford algebras are presented which when specialized to g = 1, 2 gives SSD and DSD codes, respectively. For the number of transmit antennas 2(a) the rate (in complex symbols per channel use) of the g-SD codes presented in this paper is a+1-g/2(a-9). The maximum rate of the DSD STBCs from QODs reported in the literature is a/2(a-1) which is smaller than the rate a-1/2(a-2) of the DSD codes of this paper, for 2(a) transmit antennas. In particular, the reported DSD codes for 8 and 16 transmit antennas offer rates 1 and 3/4, respectively, whereas the known STBCs from QODs offer only 3/4 and 1/2, respectively. The construction of this paper is applicable for any number of transmit antennas. The diversity sum and diversity product of the new DSD codes are studied. It is shown that the diversity sum is larger than that of all known QODs and hence the new codes perform better than the comparable QODs at low signal-to-noise ratios (SNRs) for identical spectral efficiency. Simulation results for DSD codes at variousspectral efficiencies are provided.
Resumo:
A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
For the number of transmit antennas N = 2(a) the maximum rate (in complex symbols per channel use) of all the Quasi-Orthogonal Designs (QODs) reported in the literature is a/2(a)-1. In this paper, we report double-symbol-decodable Space-Time Block Codes with rate a-1/2(a)-2 for N = 2(a) transmit antennas. In particular, our code for 8 and 16 transmit antennas offer rates 1 and 3/4 respectively, the known QODs offer only 3/4 and 1/2 respectively. Our construction is based on the representations of Clifford algebras and applicable for any number of transmit antennas. We study the diversity sum and diversity product of our codes. We show that our diversity sum is larger than that of all known QODs and hence our codes perform better than the comparable QODs at low SNRs for identical spectral efficiency. We provide simulation results for various spectral efficiencies.
Resumo:
A Space-Time Block Code (STBC) in K symbols (variables) is called g-group decodable STBC if its maximum-likelihood decoding metric can be written as a sum of g terms such that each term is a function of a subset of the K variables and each variable appears in only one term. In this paper we provide a general structure of the weight matrices of multi-group decodable codes using Clifford algebras. Without assuming that the number of variables in each group to be the same, a method of explicitly constructing the weight matrices of full-diversity, delay-optimal g-group decodable codes is presented for arbitrary number of antennas. For the special case of Nt=2a we construct two subclass of codes: (i) A class of 2a-group decodable codes with rate a2(a−1), which is, equivalently, a class of Single-Symbol Decodable codes, (ii) A class of (2a−2)-group decodable with rate (a−1)2(a−2), i.e., a class of Double-Symbol Decodable codes. Simulation results show that the DSD codes of this paper perform better than previously known Quasi-Orthogonal Designs.
Resumo:
We analytically evaluate the Renyi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Renyi entropies S-n are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel theta function associated with the A(n-1) lattice. We then study the Renyi entropies in the decompactification regime. We show that in the limit when the size of the interval becomes the size of the spatial circle, the entanglement entropy reduces to the thermal entropy of free bosons on a circle. We then set up a systematic high temperature expansion of the Renyi entropies and evaluate the finite size corrections for free bosons. Finally we compare these finite size corrections both for the free boson CFT and the free fermion CFT with the one-loop corrections obtained from bulk three dimensional handlebody spacetimes which have higher genus Riemann surfaces as its boundary. One-loop corrections in these geometries are entirely determined by quantum numbers of the excitations present in the bulk. This implies that the leading finite size corrections contributions from one-loop determinants of the Chern-Simons gauge field and the Dirac field in the dual geometry should reproduce that of the free boson and the free fermion CFT respectively. By evaluating these corrections both in the bulk and in the CFT explicitly we show that this expectation is indeed true.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
There are several examples of horizontal ringlike prominences in the observations of Ha monochromatic image of the sun. In the present paper the statie equilibrium of the plasma loop is discussed. The analytic solutions to magnetic field and density are obtained for the axisymmetrie case under the closed boundary condition. Results show the great influence of the gravity and different force-free factors on the configurations of magnetic surfaces and the distributions of thermodynamical quantities for the prominence.
Resumo:
Nesta tese abordamos alguns aspectos das inter-relações entre conhecimento, ética e valores dentro da atividade científica segundo as ideias do matemático-filósofo vitoriano William Clifford. O nosso tema geral coloca em jogo o envolvimento da produção, da avaliação e da transmissão de conhecimento científico com os comportamentos, as responsabilidades e os traços de caráter do investigador. Nosso objetivo é oferecer uma introdução ao pensamento e a algumas produções intelectuais de Clifford, um autor pouco familiar ao público filosófico brasileiro, bem como uma descrição comentada de seu escrito mais famoso, intitulado A Ética da Crença. Mediante esse objetivo, extraímos suas concepções a respeito das características e consequências éticas do empreendimento científico. As questões que orientam a tese são as seguintes: de que maneira a produção de conhecimento estaria condicionada à personalidade e ao comportamento ético de quem se lança àquela prática? Em que medida essa prática promove o cultivo de características pessoais socialmente desejáveis e favoráveis? Quais as conseqüências para a sociedade dessa inter-relação entre o caráter do investigador e os valores epistêmicos que estes colocam em ação e, sem os quais parece não ser possível a obtenção de conhecimento confiável?