2 resultados para CIDERS
Resumo:
The Ontario Tender Fruit Marketing Board operates under the Farm Producers Marketing Act. It covers all tender fruit farmers who produce either fresh or canned products. Today the board has over 500 grower-members. Tender fruit in the Niagara region includes: peaches, pears, plums, grapes and cherries. The fruits are used in a number of different ways, from jams and jellies to desserts, sauces and wine. Peaches were first harvested along the Niagara river in 1779. Peter Secord (Laura Secord’s uncle) is thought to be the first farmer to plant fruit trees when he took a land grant near Niagara in the mid 1780s. Since the beginnings of Secord’s farm, peaches, pears and plums have been grown in the Niagara region ever since. However, none of the original varities of peach trees remain today. Peaches were often used for more than eating by early settlers. The leaves and bark of the tree was used to make teas for conditions such as chronic bronchitis, coughs and gastritis. Cherries have been known to have anti-inflammatory and pain relieving properties. Like peaches and cherries, pears had many uses for the early pioneers. The wood was used to make furniture. The juice made excellent ciders and the leaves provided yellow dyes. Plums have been around for centuries, not only in the Niagara region, but throughout the world. They have appeared in pre-historic writings and were present for the first Thanksgiving in 1621. The grape industry in Ontario has also been around for centuries. It began in 1798 when land was granted to Major David Secord (brother-in-law to Laura Secord) slightly east of St. David’s, on what is Highway No. 8 today. Major Secord’s son James was given a part of the land in 1818 and in 1857 passed it onto Porter Adams. Adams is known to be the first person to plant grapes in Ontario1. Tender fruits are best grown in warm temperate climates. The Niagara fruit belt, stretching 65km from Hamilton to Niagara on the Lake, provides the climate necessary for this fruit production. This belt produces 90% of Ontario’s annual tender fruit crop. It is one of the largest fruit producing regions in all of Canada.
Resumo:
To identify chemical descriptors to distinguish Cuban from non-Cuban rums, analyses of 44 samples of rum from 15 different countries are described. To provide the chemical descriptors, analyses of the the mineral fraction, phenolic compounds, caramel, alcohols, acetic acid, ethyl acetate, ketones, and aldehydes were carried out. The analytical data were treated through the following chemometric methods: principal component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and linear discriminate analysis (LDA). These analyses indicated 23 analytes as relevant chemical descriptors for the separation of rums into two distinct groups. The possibility of clustering the rum samples investigated through PCA analysis led to an accumulative percentage of 70.4% in the first three principal components, and isoamyl alcohol, n-propyl alcohol, copper, iron, 2-furfuraldehyde (furfuraldehyde), phenylmethanal (benzaldehyde), epicatechin, and vanillin were used as chemical descriptors. By applying the PLS-DA technique to the whole set of analytical data, the following analytes have been selected as descriptors: acetone, sec-butyl alcohol, isobutyl alcohol, ethyl acetate, methanol, isoamyl alcohol, magnesium, sodium, lead, iron, manganese, copper, zinc, 4-hydroxy3,5-dimethoxybenzaldehyde (syringaldehyde), methaldehyde (formaldehyde), 5-hydroxymethyl-2furfuraldehyde (5-HMF), acetalclehyde, 2-furfuraldehyde, 2-butenal (crotonaldehyde), n-pentanal (valeraldehyde), iso-pentanal (isovaleraldehyde), benzaldehyde, 2,3-butanodione monoxime, acetylacetone, epicatechin, and vanillin. By applying the LIDA technique, a model was developed, and the following analytes were selected as descriptors: ethyl acetate, sec-butyl alcohol, n-propyl alcohol, n-butyl alcohol, isoamyl alcohol, isobutyl alcohol, caramel, catechin, vanillin, epicatechin, manganese, acetalclehyde, 4-hydroxy-3-methoxybenzoic acid, 2-butenal, 4-hydroxy-3,5-dimethoxybenzoic acid, cyclopentanone, acetone, lead, zinc, calcium, barium, strontium, and sodium. This model allowed the discrimination of Cuban rums from the others with 88.2% accuracy.