711 resultados para CI
Resumo:
This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.
Resumo:
CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.
Resumo:
Minor phases in meteorites are important indicators of parent-body processing conditions. For example, Kerridge and others (1, 2) have shown that the presence of sulphates and carbonates in CI chondrites provides evidence for aqueous alteration on the parent body. Carbonates and sulphates are relatively prominent components of CI chondrites (e.g., -11.6 wt.% of total mass' and> 10 um diameter) compared to minor phases in most other classes of meteorite and thus, have been amenable to macro scale characterisation using optical petrography and electron microprobe analysis. These minor phases account for significant accumulations of low abundance elements, such as Na, S, K, Ca, and Ni within the bulk meteorite. The fine grained matrix, which consists mostly oflizardite- and montmorillonite-like clays (3), is the...
Resumo:
This thesis is a comprehensive study of microalgae biodiesel for the compression ignition engine. It examines microalgae growing conditions, the extraction process and physiochemical properties with a wide range of microalgae species. It also evaluates microalgae biodiesel with regards to engine performance and emission characteristics and explains the difficulties and potentiality of microalgae as a biodiesel. In doing so, an extensive analysis of different extraction methods and engine testing was conducted and a comprehensive study on microalgae biodiesel is presented.
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.
Resumo:
The ion-molecule reactions in acetone were investigated which were induced under the chemical ionization. The structural information of the reaction products were obtained by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 30eV.
Resumo:
The dye C.I. Acid Blue 80 (AB80) was easily degraded by TiO2-P25 assisted photocatalysis in aqueous dispersion under irradiation of sunlight. The optimal reaction conditions were [TiO2] = 2.0 g/L, pH = 10, [H2O2] = 5 mmol/L. The photocatalytic reaction followed pseudo-first order kinetics. The adsorption of AB80 onto TiO2 was in accord with Langmuir equation.
Resumo:
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for effluents of textile finishing industry ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the COD. However, little is known about the reaction intermediates and products formed during ozonation. This work focuses on the oxidative degradation of purified (>90%), hydrolyzed Reactive Red 120 (Color Index), a widely used azo dye in the textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the dye in ultra pure water was performed in a laboratory scale cylindrical batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (53 5 nm), was almost complete after 150 min with an ozone concentration of 12.8 mg/l. The TOC/TOC0 ratio was about 74% and the COD was diminished to 46% of the initial value. The BOD5/COD ratio increased from 0.01 to 0.14. To obtain detailed information on the reaction processes during ozonation and the resulting oxidation products organic and inorganic anions were analyzed. Oxidation and cleavage of the azo group yielded nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused an increase in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.