890 resultados para CHRONIC STRESS
Resumo:
Prenatal stress can cause many long-term behavior changes in offspring, but whether prenatal stress can alter addictive behavior in offspring and postnatal enriched environment treatment (EE) can restore these changes are unknown. We reported here that pr
Resumo:
Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed
Resumo:
This study was carried out with the objective of evaluating the effect of heat (38.8 degreesC) or cold (35.8 degreesC) stress on chicken embryo development and tissues Hsp70 levels, after the 13th day of incubation. Embryo weight (percent egg weight), organ weight (percent embryo weight) and Hsp70 levels (ng Hsp70 mug(-1) total protein) in different tissues (liver, breast muscle, heart, lungs, brain and kidney) were studied at the end of incubation. Cold stress induced a lower embryo weight and lower kidney and lungs weights, whereas heart and liver were lighter in heat-stressed embryos. An interaction between temperature and age was obtained only for Hsp70 levels in kidney and heart. Cold-stressed embryos showed higher Hsp70 levels in the brain, lungs and liver; a decrease in brain and breast muscle Hsp70 levels was seen from the 19th to 20th days in control embryos. Hsp70 levels increased with age in kidneys of control embryos and in heart of heat- and cold-stressed embryos. In conclusion, this study showed that chicken embryo organ weights are affected by incubation temperature, and that Hsp70 expression is tissue dependent (higher levels being seen in the brain) being cold-stress more effective in increasing Hsp70 levels in most studied tissues.
Resumo:
Repeated exposure to stress results in augmentation in the locomotor response to psychostimulant drugs. We investigated the locomotor response to a novel environment or cocaine [ 10 mg/kg, intraperitoneally (i.p.)] and basal corticosterone levels in male adolescent rats exposed to chronic restraint or variable stress. Animals in the chronic restraint group were restrained for 1 hour daily. The chronic variable stress protocol consisted of exposure to different stressors twice a day in random order. Chronic restraint and variable stress regimens began simultaneously on postnatal day (P) 25 and were applied for 10 days. During this period the control group was left undisturbed except for cleaning the cages. Three days after the last exposure to stress, cocaine- and novelty-induced locomotion were recorded in an activity cage. Plasma corticosterone levels were determined in a subset of stress and control animals. Exposure to both chronic restraint and variable stress increased cocaine- induced locomotion and basal corticosterone plasma levels, while no change was observed in the response to a novel environment. Moreover, rats exposed to variable stress displayed the greatest locomotor response following a challenge dose with cocaine when compared to control and chronic restraint stress groups. This observation indicates that the stress regimen is relevant to the degree of stress-induced sensitization to cocaine.
Resumo:
We examined nicotine-induced locomotion and increase in corticosterone plasma levels in adolescent and adult animals exposed to chronic restraint stress. Adolescent [postnatal day (P) 28-37] and adult (P60-67) rats were restrained for 2 hours once daily for 7 days. Three days after the last exposure to stress, the animals were challenged with saline or nicotine (0.4 mg/kg subcutaneously). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Exposure to stress did not affect the nicotine-induced locomotor- or corticosterone-activating effects in both ages.
Resumo:
Background and objective: Stress during pregnancy may alter offspring susceptibility to diseases during adulthood. In the present study, female Lewis rats were subjected to chronic stress during the gestational period, and the effect of this stress was evaluated histometrically on the progression of ligature-induced bone loss in their adult offspring.Material and methods: After confirming pregnancy, half of the pregnant rats were randomly designated as control animals (no stress regimen was imposed), and the other half was submitted to a chronic stress model (immobilization at cold temperature) between the 7th and the 18th gestational day. After birth, 12 male rats delivered by stressed mothers - Group 1 (G1) - and 12 male rats delivered by non-stressed mothers - Group 2 (G2) - were selected. When birthed rats reached 250 g of body weight, a silk ligature was placed around their maxillary right second molar in order to induce bone loss. The non-ligated left side served as a control. Sixty days later, these animals were sacrificed by anaesthetic overdose. After routine laboratorial processing, images of the histological sections were digitized and submitted for histometric measurement using two parameters: histological attachment loss and bone loss.Results: on the ligated side, G1 presented with greater histological attachment and bone loss than G2 (p < 0.05). on the non-ligated control side, neither of the groups presented with alterations in these parameters (p > 0.05).Conclusion: The chronic stress regimen imposed on pregnant rats produced a greater progression of ligature-induced bone loss in their adult offspring. (C) 0 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The present study aims at comparing the effects of physical and variable chronic stress on ligature-induced periodontitis in rats.Design: Forty-eight adult Wistar rats were randomly assigned to four groups (n = 12): physical stress, variable stress, positive control and negative control. The models of physical stress were immobilization and immobilization associated with exposure to cold. The models of variable stress were exposure to intermittent light, 24 h isolation, oral cavity examination, crowded environment, smell of blood and noise. After 10 days of physical or variable stress animals underwent experimental induction of periodontal disease in one oral side. Positive control also underwent experimental induction of periodontal disease on the 10th day. Negative control did not receive any type of intervention. At the end of the experimental period (60 days), all animals were euthanized. After routine laboratory processing, images of the histological sections were digitised and submitted to histometric measurement using two parameters: histologic attachment loss and bone loss.Results: Histological attachment loss and bone loss were greater (p < 0.05) in the physical stress group than in the other groups (variable stress, positive and negative control groups). on the non-periodontitis side, these same histological parameters did not significantly differ amongst groups.Conclusions: Physical stress negatively modulated the response pattern to experimentally induced periodontitis in rats. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
1. The objective was to determine whether nitric oxide participates in stress adaptive responses. Acute stress (AS) decreased endothelium-dependent vasoconstriction to noradrenaline (NA) in rat aorta [control rat (CR) 3.90+/-0.18, n=22; AS 2.76+/-0.20, n=13; P<0.05].2. Chronic stress exposure previous to AS (CS) potentiated this effect [CS 1.93+/-0.19; n=9; P<0.05 related to CR, P<0.05 related to AS].3. Methylene blue and N-G monomethyl-L-arginine, but not indomethaein, restored the decreased aorta reactivity to NA. 4. No reactivity alteration was observed in aorta without endothelium either in both stress conditions or in the presence of inhibitors. These data show that the nitric oxide participates in stress responses. (C) 1998 Elsevier B.V.
Resumo:
Thoroughbred fillies were divided into three groups according to age: group 1, 7 fillies aged 1 to 2 years (G1) starting the training program; group 2, 9 fillies aged 2 to 3 years (G2) in a full training program; group 3, 8 older fillies 3 to 4 years of age (G3) training and racing. Blood samples were collected weekly from July to December. Cortisol was quantified using a solid phase DPC kit. The intra- and interassay coefficients of variation were 12.5% and 15.65% and sensitivity was 1.9 ± 0.2 nmol/ l. The semester average of cortisol levels varied between groups: G1 = 148.8 ± 6.7, G2 = 125.7 ± 5.8, G3 = 101.1 ± 5.4 nmol/l, with G3 differing statistically from the other groups. The lower cortisol levels observed in the older fillies leads us to propose that the stress stimulus, when maintained over a long period of time, may become chronic and result in a reduction of hypophyseal corticotropin-releasing hormone receptors. The secretion of endogenous opioids may also lead to low serum cortisol levels.
Resumo:
Purposes: The purposes of this study were to evaluate the influence of chronic stress (CS) on implant osseointegration and also to analyze whether alendronate (ALN) therapy could prevent these eventual stress-negative effects. Materials and Methods: Adult male Holtzmann rats were assigned to one of the four experimental groups: AL (ALN; 1mg/kg/week; n=12), ALS (ALN+CS; 1mg/kg/week; n=12), CTL (sterile physiological saline; n=12), or CTLS (sterile physiological saline+CS; n=12). After 58 days of drug therapy, the ALS and CTLS groups were exposed to CS, and 2 days later all animals underwent tibial implant installation. The animals were euthanized 28 days following the operative surgical procedure. Results: It was observed that the CTLS group presented an impairment of bone metabolism represented by lowest levels of bone-specific alkaline phosphatase and bone area fraction occupancy values. Furthermore, these animals presented a higher proportion of empty osteocytic lacunae. In contrast, the ALN therapy showed increased osseointegration and torque value parameters, regardless of stress exposition. Conclusions: Analysis of the data presented suggests that CS partially impairs the osseointegration of tibial implants and that ALN therapy is able to prevent these negative effects. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The aim of this study was assess the role of chronic stress on the metabolic and nutritional profile of rats exposed to a high-fat diet. Materials and methods: Thirty-day-old male Wistar rats (70-100 g) were distributed into four groups: normal-diet (NC), chronic stress (St), high-fat diet (HD), and chronic stress/high-fat diet (HD/St). Stress consisted at immobilization during 15 weeks, 5 times per week, 1h per day; and exposure to the high-fat diet lasted 15 weeks. Nutritional and metabolic parameters were assessed. The level of significance was 5%. Results: The HD group had final body weight, total fat, as well as insulin and leptin increased, and they were insulin resistant. The St and HD/St had arterial hypertension and increased levels of corticosterone. Stress blocked the effects of the high-fat diet. Conclusion: Chronic stress prevented the appearance of obesity. Our results help to clarify the mechanisms involved in metabolic and nutritional dysfunction, and contribute to clinical cases linked to stress and high-fat diet.
Resumo:
Background: Chronic stress is associated with cardiac remodeling; however the mechanisms have yet to be clarified. Objective: The purpose of this study was test the hypothesis that chronic stress promotes cardiac dysfunction associated to L-type calcium Ca2+ channel activity depression. Methods: Thirty-day-old male Wistar rats (70 - 100 g) were distributed into two groups: control (C) and chronic stress (St). The stress was consistently maintained at immobilization during 15 weeks, 5 times per week, 1h per day. The cardiac function was evaluated by left ventricular performance through echocardiography and by ventricular isolated papillary muscle. The myocardial papillary muscle activity was assessed at baseline conditions and with inotropic maneuvers such as: post-rest contraction and increases in extracellular Ca2+ concentration, in presence or absence of specific blockers L-type calcium channels. Results: The stress was characterized for adrenal glands hypertrophy, increase of systemic corticosterone level and arterial hypertension. The chronic stress provided left ventricular hypertrophy. The left ventricular and baseline myocardial function did not change with chronic stress. However, it improved the response of the papillary muscle in relation to positive inotropic stimulation. This function improvement was not associated with the L-type Ca2+ channel. Conclusion: Chronic stress produced cardiac hypertrophy; however, in the study of papillary muscle, the positive inotropic maneuvers potentiated cardiac function in stressed rats, without involvement of L-type Ca2+ channel. Thus, the responsible mechanisms remain unclear with respect to Ca2+ influx alterations. (Arq Bras Cardiol 2012;99(4):907-914)