952 resultados para CHROMIUM
Resumo:
The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.
Resumo:
Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.
Resumo:
Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.
Resumo:
Composite TiO2/acid leached serpentine tailings (AST) were synthesized through the hydrolysis–deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energydispersive X-ray spectrometry (EDS), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and surface area measurement (BET). The XRD analysis showed that TiO2 coated on the surface of acid leached serpentine tailings was mixed crystal phases of rutile and anatase, the grain size of which is 10–30 nm. SEM, TEM, and EDS analysis exhibited that nano-TiO2 particles were deposited on the surface and internal cavities of acid leaching serpentine tailings. The XPS and FT-IR analysis demonstrated that the coating process of TiO2 on AST was a physical adsorption process. The large specific surface area, porous structure, and plentiful surface hydroxyl group of TiO2/AST composite resulted in the high adsorption capacity of Cr(VI). The experimental results demonstrated that initial concentration of Cr(VI), the amount of the catalyst, and pH greatly influenced the removal efficiency of Cr(VI). The removal kinetics of Cr(VI) at a relative low initial concentration was fitted well with Langmuir–Hinshelwood kinetics model with R2 value of about unity. The asprepared composites exhibited strong adsorption and photocatalytic capacity for the removal of Cr(VI), and the possible photocatalytic reduction mechanism was studied. The photodecomposition of Cr(VI) was as high as 95% within 2 h, and the reusability of the photocatalysis was proven.
Resumo:
The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.
Resumo:
Mesostructured lamellar chromium oxide with an interlayer separation of 29 Angstrom has been prepared by employing a cationic surfactant. The introduction of phosphate groups in the oxide increases the interlayer separation to 32 Angstrom.
Resumo:
A method has been developed for the removal of chromium using ferrous sulphide generated in situ. The effects of experimental parameters such as pH, reagent dosages, interference from cations and chelating agents have been investigated. Under optimum conditions, removal efficiencies of 99 and 97% for synthetic and industrial samples have been obtained. The method offers all the advantages of sulphide precipitation process and can be adopted easily for industrial effluents.
Resumo:
The estimation of feed efficiency in beef cattle should be undertaken in the environment where the genetic potential of the animal is to be expressed. Consequently if cattle are to be pasture fed, there is a requirement for accurate feed intake measurements on individual animals in the field. This in turn requires the use of accurate faecal marker delivery systems.
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
Chemical shifts in the K-absorption edges, AE, of a series of chromium, nickel, and molybdenum compounds have been investigated. The AE values in a given series vary in the same direction as the metal-core-level binding energies obtained from X-ray photoelectron spectroscopy. The AI3 values are related to the effective atomic charge of the metal by a parabolic relation. In the case of molybdenum compounds, the chemical shifts of the K, emission lines vary in the same manner as M.
Resumo:
A series of metabolism experiments investigated the recovery of continuous-, intravenously infused chromium complexed with ethylenediamine tetra-acetic acid (CrEDTA) and lithium sulphate in the urine of cattle with a view to using the markers to estimate urine and metabolite output in grazing cattle. The recovery of Cr in urine from these infusions was similar (90%) in metabolism trials when cattle consumed three very contrasting diets: high-grain formulated pellet, lucerne hay (Medicago sativa) or low-quality native grass hay (predominantly Heteropogon contortus). By contrast, Li recovery in urine averaged 46.3 +/- 0.40% and 72.6 +/- 0.43% for native pasture and lucerne hays, respectively, but was not constant across days. There was negligible transfer of Cr from CrEDTA in blood serum to the rumen or faeces, whereas appreciable quantities of infused Li were found in both. The ratio of urine volume estimated by spot samples and marker dilution of Cr, to urine volume measured gravimetrically, was 1.05. In grazing studies using rumen-fistulated (RF) steers grazing seven different tropical and temperate grass and legume pastures, the ratio of concentrations of purine derivatives (PD) to Cr in spot samples of urine was shown to vary diurnally in the range of 49% to 157% of the average 24 h value. This finding indicated the need for regular sampling of urine to achieve an accurate average value for the PD: Cr ratio in urine for use in estimating urinary PD excretion and hence microbial protein production in the rumen. It was concluded that continuous, intravenous infusion of CrEDTA resulted in a constant recovery of Cr in the urine of cattle across diets and, provided an intensive sampling regime was followed to account for diurnal variation, it would be suitable as a marker to estimate urine volume and urinary output of PD in grazing cattle.
Resumo:
Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
The thermal decomposition of lanthanum biscitrato chromium(III) dihydrate has been studied in static air and dynamic argon atmospheres. The complex decomposes in four steps: dehydration, decomposition of the citrate to an intermediate oxycarbonate, formation of LaCrO4(V) from oxycarbonate, and finally decomposition of LaCrO4(V) to LaCrO3. Formation of LaCrCrO4(V) requires the presence of oxygen The decomposition behaviour of a mechanical mixture of lanthanum citrate hydrate and chromium citrate hydrate was compared with that of the citrato complex. Both the starting material and the intermediates were characterized by X-ray diffraction, IR electronic and ESR spectroscopy, surface area and magnetic susceptibility measurements, as well as by chemical analysis. A scheme is proposed for the decomposition of lanthanum biscitrato chromium(III) dihydrate in air. LaCrO3 can be obtained at temperatures as low as 875 K by isothermal decomposition of the complex.