424 resultados para CHOROID-PLEXUS
Resumo:
Cytogenetic studies of choroid plexus tumors, particularly for atypical choroid plexus papillomas, have been rarely described. In the present report, the cytogenetic investigation of an atypical choroid plexus papilloma occurring at the posterior fossa of a 16-year-old male is described. Comparative genome hybridization analysis demonstrated gains of genetic material from almost all chromosomes. Chromosome losses involved 19p, regional losses at chromosome X and loss of chromosome Y. The presence of polyploid cells was confirmed by fluorescence in situ hybridization analysis with probes directed to centromeric regions. Furthermore, the microscopic analysis of cultures showed nuclear buds, nucleoplasmic bridges, and micronuclei in 23% of tumor cells suggesting the presence of complex chromosomal abnormalities. Previous cytogenetic studies on choroid plexus papillomas showed either normal, hypodiploid or hyperdiploid karyotypes. To the best of our knowledge, this is the first report of polyploidy in choroid plexus papilloma of intermediate malignancy grade. Although the mechanisms beneath such genome duplication remain to be elucidated, the observed abnormal nuclear shapes indicate constant restructuring of the tumor`s genome and deserves further investigation.
Resumo:
Cytogenetic studies of atypical choroid plexus papillomas (CPP) have been poorly described. In the present report, the cytogenetic investigation of an atypical CPP occurring in an infant is detailed. CPP chromosome preparations were analyzed by giemsa-trypsin-banding (GTG-banding) and comparative genome hybridization (CGH). Conventional karyotype analysis of tumor culture showed a normal chromosome complement. The results were confirmed by CGH, showing normal hybridization patterns for the sample. To date, the few atypical CPPs described in the literature have shown disparate cytogenetic information. This is the first report of a normal chromosome complement in atypical CPP. The heterogenic genetic features observed in these small series may reflect the diverse genetic background of choroid plexus tumors in children.
Resumo:
The present case report describes the presence of a persistent dysarthria and dysphagia as a consequence of surgical intervention for a choroid plexus papilloma (CPP). WM was a nine year ten month old male who at the time of the present study was seven years post-surgery. A comprehensive perceptual and instrumental test battery was used to document the nature of the dysarthria incorporating all components of speech production including respiration, phonation, resonance, articulation, and prosody. The nature of the dysphagia was evaluated through the use of videofluoroscopic evaluation of swallowing (VFS). Assessments confirmed the presence of a LMN dysarthria, marked by deficits in phonation, respiration, and prosody. Dysphagia assessment revealed deficits in oral preparatory, oral and pharyngeal stages of the swallow. The presence of persistent dysarthria and dysphagia in this case has a number of important implications for the management of children undergoing surgery for fourth ventricle CPPs, in particular the need for appropriate treatment, as well as counselling prior to surgery of the possible negative outcomes related to speech and swallowing. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.
Resumo:
The blood brain barrier (BBB) and the blood cerebrospinal fluid barrier (BCSFB) form the barriers of the brain. These barriers are essential not only for the protection of the brain, but also in regulating the exchange of cells and molecules in and out of the brain. The choroid plexus (CP) epithelial cells and the arachnoid membrane form the BCSFB. The CP is structurally divided into two independent compartments: one formed by a unique and continuous line of epithelial cells that rest upon a basal lamina; and, a second consisting of a central core formed by connective and highly vascularized tissue populated by diverse cell types (fibroblasts, macrophages and dendritic cells). Here, we review how the CP transcriptome and secretome vary depending on the nature and duration of the stimuli to which the CP is exposed. Specifically, when the peripheral stimulation is acute the CP response is rapid, strong and transient, whereas if the stimulation is sustained in time the CP response persists but it is weaker. Furthermore, not all of the epithelium responds at the same time to peripheral stimulation, suggesting the existence of a synchrony system between individual CP epithelial cells.
Resumo:
Genetic and epigenetic alterations in choroid plexus tumors, a rare neuroepithelial neoplasm most frequently detected in children, are poorly characterized. Epigenetic silencing associated with aberrant CpG island methylation is one mechanism leading to the loss of tumor suppressor functions in cancer cells. Using methylation-specific polymerase chain reaction, the methylation patterns of the genes CDH1 (E-cadherin), RARB (retinoic acid receptor, beta), and SFN (stratifin; 14-3-3 sigma) were retrospectively investigated in eight choroid plexus tumors (five papillomas, two atypical papillomas, and one carcinoma), as well as in two normal cortexes obtained after autopsy from male individuals aged 6 months and 64 years. Among the six pediatric tumors, the mean age at diagnosis was 1.8 years old (range, 0.2-6) and the two adult tumors were detected in a 66-year-old man and a 45-year-old woman. A high frequency of hypermethylation was detected in CDH1 and SFN genes in tumoral and normal cortex tissues. Tumor-specific RARB hypermethylation was observed in four papillomas. Further studies are required to evaluate the role of aberrant methylation in choroid plexus tumor progression. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The cells of the choroid plexus of the lateral ventricles of the monkey Cebus apella apella were examined through scanning electron microscopy at contributing to the description of such structures in primates. The animals were anesthetized previously with 3% hypnol intraperitoneally and after perfusion with 2.5% glutaraldehyde, samples of the choroid plexus were collected after exhibition of the central portion and inferior horn of the lateral ventricles. The ventricular surface of those cells presents globose form as well as fine interlaced protrusions named microvilli. Among those, it is observed the presence of some cilia. Resting on the choroid epithelial cells there is a variable number of free cells, with fine prolongations which extend from them. They are probably macrophages and have been compared to Kolmer cells or epiplexus cells, located on choroid epithelium. The choroid plexus of the encephalic lateral ventricles of the monkey Cebus apella apella at scanning electron microscopy is similar to that of other primates, as well as to that of other species of mammals mainly cats and rats, and also humans.
Resumo:
Expression of E-cadherin and beta-catenin has been widely studied in various human and canine epithelial tumors and has been correlated with dedifferentiation, invasiveness, and metastasis. Choroid plexus tumors (CPTs) are of epithelial origin, and the most important prognostic factor in human medicine is the tumor grade. Limited information is available regarding E-cadherin and beta-catenin expression in human CPTs, and no information is found in the veterinary literature. In the current study, 42 canine CPTs (19 choroid plexus papillomas and 23 choroid plexus carcinomas) were retrospectively reviewed, and the intensity and cellular staining pattern of E-cadherin and beta-catenin were correlated with histological features, paying special attention to grade, invasion, and metastasis. In addition, cytokeratin and glial fibrillary acidic protein (GFAP) antibodies were evaluated as markers for canine CPTs. It was found that loss of E-cadherin and beta-catenin expression was uncommon in canine CPTs. Rather, membranous expression of both molecules was increased in CPTs compared to normal choroid plexus (NCP), regardless of tumor grade. Additionally, aberrant cytoplasmic or nuclear expression of both E-cadherin and beta-catenin was often observed in CPTs. GFAP was frequently expressed in CPTs in contrast to NCP. None of these parameters were correlated with malignancy, and therefore, do not appear to be useful for prognostic information. Nevertheless, a panel of antibodies including E-cadherin and GFAP might be useful to support the diagnosis of CPTs and help to differentiate them from other tumors, such as ependymomas and metastatic epithelial tumors.
Resumo:
Enterovirus is the most common pathogen causing viral meningitis especially in children. Besides the blood-brain barrier (BBB) the choroid plexus, which forms the blood-cerebrospinal-fluid (CSF) barrier (BCSFB), was shown to be involved in the pathogenesis of enteroviral meningitis. In a human in vitro model of the BCSFB consisting of human choroid plexus papilloma cells (HIBCPP), the permissiveness of plexus epithelial cells for Echovirus 30 (EV30) was analyzed by immunoblotting and quantitative real-time PCR (Q-PCR). HIBCPP could be directly infected by EV30 from the apical as well as from the physiological relevant basolateral side. During an infection period of 5h no alterations of barrier function and cell viability could be observed. Analysis of the cytokine/chemokine-profile following enteroviral infection with a cytometric bead array (CBA) and Q-PCR revealed an enhanced secretion of PanGRO (CXCL1, CXCL2 and CXCL3), IL8 and CCL5. Q-PCR showed a significant upregulation of CXCL1, CXCL2 and CXCL3 in a time dependant manner. However, there was only a minor effect of HIBCPP-infection with EV30 on transepithelial T lymphocyte migration with or without the chemoattractant CXCL12. Moreover, CXCL3 did not significantly enhance T cell migrations. Therefore additional factors must be involved for the in vivo reported enhanced T cell migration into the CNS in the context of enteroviral meningitis. As HIBCPP are permissive for infection with EV30, they constitute a valuable human in vitro model to study viral infection at the BCSFB.
Resumo:
Interleukin 17-producing T helper cells (T(H)-17 cells) are important in experimental autoimmune encephalomyelitis, but their route of entry into the central nervous system (CNS) and their contribution relative to that of other effector T cells remain to be determined. Here we found that mice lacking CCR6, a chemokine receptor characteristic of T(H)-17 cells, developed T(H)-17 responses but were highly resistant to the induction of experimental autoimmune encephalomyelitis. Disease susceptibility was reconstituted by transfer of wild-type T cells that entered into the CNS before disease onset and triggered massive CCR6-independent recruitment of effector T cells across activated parenchymal vessels. The CCR6 ligand CCL20 was constitutively expressed in epithelial cells of choroid plexus in mice and humans. Our results identify distinct molecular requirements and ports of lymphocyte entry into uninflamed versus inflamed CNS and suggest that the CCR6-CCL20 axis in the choroid plexus controls immune surveillance of the CNS.
Resumo:
BACKGROUND The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. METHODS We compared cell line models of the mouse BCSFB derived from the Immortomouse(®) and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. RESULTS We found that inducible cell line models established from the Immortomouse(®) or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. CONCLUSIONS Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.
Resumo:
The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.
Resumo:
Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.