956 resultados para CHLORIDE COMPLEXES
Resumo:
Mode of access: Internet.
Resumo:
Copper(II) bromide and chloride complexes of the new heptadentate ligand 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L) have been prepared. For the bromide complexes, chains of novel, approximately C-2-symmetric, chiral [Cu-2(L)Br-2](2+) 'wedge-shaped' tectons are found. The links between the dicopper tectons and the overall chirality and packing of the chains are dictated by the bromide ion content, not the counter anion. In contrast, the chloride complexes exhibit linked asymmetric [Cu-2(L)Cl-3](+) tectons with distinct N3CuCl2 and N4CuCl2 centres in the solid. The overall structures of the dicopper bromide and chloride units persist in solution irrespective of the halide. The redox chemistry of the various species is also described.
Resumo:
The Jurassic (approximately 145 Ma) Nambija oxidized gold skarns are hosted by the Triassic volcanosedimentary Piuntza unit in the sub-Andean zone of southeastern Ecuador. The skarns consist dominantly of granditic garnet (Ad(20-98)) with subordinate pyroxene (Di(46-92)Hd(17-42)Jo(0-19)) and epidote and are spatially associated with porphyritic quartz-diorite to granodiorite intrusions. Endoskarn is developed at the intrusion margins and grades inwards into a potassic alteration zone. Exoskarn has an outer K- and Na-enriched zone in the volcanosedimentary unit. Gold mineralization is associated with the weakly developed retrograde alteration of the exoskarn and occurs mainly in sulfide-poor vugs and milky quartz veins and veinlets in association with hematite. Fluid inclusion data for the main part of the prograde stage indicate the coexistence of high-temperature (500A degrees C to > 600A degrees C), high-salinity (up to 65 wt.% eq. NaCl), and moderate- to low-salinity aqueous-carbonic fluids interpreted to have been trapped at pressures around 100-120 MPa, corresponding to about 4-km depth. Lower-temperature (510-300A degrees C) and moderate- to low-salinity (23-2 wt.% eq. NaCl) aqueous fluids are recorded in garnet and epidote of the end of the prograde stage. The microthermometric data (Th from 513A degrees C to 318A degrees C and salinity from 1.0 to 23 wt.% eq. NaCl) and delta(18)O values between 6.2aEuro degrees and 11.5aEuro degrees for gold-bearing milky quartz from the retrograde stage suggest that the ore-forming fluid was dominantly magmatic. Pressures during the early retrograde stage were in the range of 50-100 MPa, in line with the evidence for CO(2) effervescence and probable local boiling. The dominance of magmatic low-saline to moderately saline oxidizing fluids during the retrograde stage is consistent with the depth of the skarn system, which could have delayed the ingression of external fluids until relatively low temperatures were reached. The resulting low water-to-rock ratios explain the weak retrograde alteration and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO(2) effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by delta(18)O values of 0.4aEuro degrees to 6.2aEuro degrees for fluids depositing quartz (below 350A degrees C) in sulfide-rich barren veins. Low-temperature (< 300A degrees C) meteoric fluids (delta(18)O(water) between -10.0aEuro degrees and -2.0aEuro degrees) are responsible for the precipitation of late comb quartz and calcite in cavities and veins and indicate mixing with cooler fluids of higher salinities (about 100A degrees C and 25 wt.% eq. NaCl). The latter are similar to low-temperature fluids (202-74.5A degrees C) with delta(18)O values of -0.5aEuro degrees to 3.1aEuro degrees and salinities in the range of 21.1 to 17.3 wt.% eq. CaCl(2), trapped in calcite of late veins and interpreted as basinal brines. Nambija represents a deep equivalent of the oxidized gold skarn class, the presence of CO(2) in the fluids being partly a consequence of the relatively deep setting at about 4-km depth. As in other Au-bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.
Resumo:
Työssä tutkittiin jalometallien selektiivistä erottamista kloridiliuoksista synteettisten polymeerihartsien avulla. Laboratoriokokeissa keskityttiin tutkimaan kullan erottamista hydrofiilisen polymetakrylaattipohjaisen adsorbentin avulla. Lähtökohtana oli platinarikaste, joka sisälsi kullan lisäksi platinaa, palladiumia, hopeaa, kuparia, rautaa, vismuttia, seleeniä ja telluuria. Mittauksissa tutkittiin eri metallien ja puolimetallien adsorptiota hartsiin tasapaino-, kinetiikka- ja kolonnikokeilla. Työssä käytettiin myös adsorption simulointiin monikomponenttierotuksen dynaamiseen mallintamiseen tarkoitettua tietokoneohjelmaa, johon tarvittavat parametrit estimoitiin kokeellisen datan avulla. Tasapainokokeet yhtä metallia sisältäneistä liuoksista osoittivat, että hartsi adsorboi tehokkaasti kultaa kaikissa tutkituissa suolahappopitoisuuksissa (1-6 M). Kulta muodostaa hartsiin hyvin adsorboituvia tetrakloroauraatti(III)ioneja, [AuCl4]-, jotka ovat erittäin stabiileja pieniin kloridipitoisuuksiin saakka. Suolahappopitoisuudella oli merkitystä ainoastaan raudan adsorptioon, joka kasvoi huomattavasti suolahappopitoisuuden noustessa johtuen raudan taipumuksesta muodostaa hyvin adsorboituvia [FeCl4]--ioneja väkevissä suolahappopitoisuuksissa. Muiden tutkittujen alkuaineiden adsorptiot jäivät alhaisiksi kaikilla suolahappopitoisuuksilla. Rikasteliuoksella tehdyt tasapainokokeet osoittivat, että adsorptiokapasiteetti kullalle riippuu voimakkaasti muista läsnäolevista komponenteista. Kilpaileva adsorptio kuvattiin Langmuir-Freundlich-isotermillä. Kolonnikokeet osoittivat, että hartsi adsorboi kullan lisäksi hieman myös rautaa ja telluuria, jotka saatiin kuitenkin eluoitua hartsista täysin 5 M suolahappopesulla ja sitä seuraavalla 1 M suolahappopesulla. Tehokkaaksi liuokseksi kullan desorboimiseen osoittautui asetonin ja 1 M suolahapon seos. Kolonnierotuksen eri vaiheet pystyttiin tyydyttävästi kuvaamaan simulointimallilla.
Resumo:
Sr isotope analyses have been conducted on anhydrite samples from the TAG (Trans-Atlantic Geotraverse) active hydrothermal mound (26°08?N, Mid-Atlantic Ridge) that have previously been shown to exhibit two distinct patterns of REE behavior when normalized to TAG end-member hydrothermal fluid. Despite differences in REE patterns, the Sr isotope data indicate that all the anhydrites precipitated from fluids with a similar range of hydrothermal fluid and seawater components, and all but one were seawater-dominated (52%-75%). Speciation calculations using the EQ3/6 software package for geochemical modeling of aqueous systems suggest that the REE complexation behavior in different fluid mixing scenarios can explain the variations in the REE patterns. Anhydrites that exhibit relatively flat REE patterns [(La_bs)/(Yb_bs) = 0.8-2.0; subscript bs indicates normalization to end-member black smoker hydrothermal fluid] and a small or no Eu anomaly [(Eu_bs)/(Eu*_bs) = 0.8-2.0] are inferred to have precipitated from mixes of end-member hydrothermal fluid and cold seawater. REE complexes with hard ligands (e.g., fluoride and chloride) are less stable at low temperatures and trivalent Eu has an ionic radius similar to that of Ca2+ and the other REE, and so they behave coherently. In contrast, anhydrites that exhibit slight LREE-depletion [(La_bs)/(Yb_bs) = 0.4-1.4] and a distinct negative anomaly [(Eu_bs)/(Eu*_bs) = 0.2-0.8] are inferred to have precipitated from mixes of end-member hydrothermal fluid and conductively heated seawater. The LREE depletion results from the presence of very stable LREE chloro-complexes that effectively limit the availability of the LREE for partitioning into anhydrite. Above 250°C, Eu is present only in divalent form as chloride complexes, and discrimination against Eu2+ is likely due to both the mismatch in ionic radii between Eu2+ and Ca2+, and the strong chloro-complexation of divalent Eu which promotes stability in the fluid and inhibits partitioning of Eu2+ into precipitating anhydrite. These variations in REE behavior attest to rapid fluctuations in thermal regime, fluid flow and mixing in the subsurface of the TAG mound that give rise to heterogeneity in the formation conditions of individual anhydrite crystals.
Resumo:
A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions (“total” concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO3 content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386–1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium carbonate and the ease with which these bonds are broken in the gastric solution. The calculation of risk assessments are therefore dependant on the methodology used and the specific environment they address. This has impacts on management strategies formulated to ensure that the most vulnerable of society, children, can live and play without adverse consequences to their health.
Resumo:
Two aspects of gold mineralisation in the Caledonides of the British Isles have been investigated: gold-telluride mineralisation at Clogau Mine, North Wales; and placer gold mineralisation in the Southern Uplands, Scotland. The primary ore assemblage at Clogau Mine is pyrite, arsenopyrite, cobaltite, pyrrhotine, chalcopyrite, galena, tellurbismuth, tetradymite, altaite, hessite, native gold, wehrlite, hedleyite, native bismuth, bismuthunite and various sulphosalts. The generalised paragenesis is early Fe, Co, Cu, As and S species, and later minerals of Pb, Bi, Ag, Au, Te, Sb. Electron probe micro-analysis (EPMA) of complex telluride-sulphide intergrowths suggests that these intergrowths formed by co-crystallisation/replacement processes and not exsolution. Minor element chemical variation, in the sulphides and tellurides, indicates that antimony and cadmium are preferentially partitioned into telluride minerals. Mineral stability diagrams suggest that during gold deposition log bf aTe2 was between -7.9 and -9.7 and log bf aS2 between -12.4 and -13.8. Co-existing mineral assemblages indicate that the final stages of telluride mineralisation were between c. 250 - 275oC. It is suggested that the high-grade telluride ore shoot was the result of remobilisation of Au, Bi, Ag and Te from low grade mineralisation elsewhere within the vein system, and that gold deposition was brought about by destabilisation of gold chloride complexes by interaction with graphite, sulphides and tellurbismuth. Scanning electron microscopy of planer gold grains from the Southern Uplands, Scotland, indicates that detailed studies on the morphology of placer gold can be used to elucidate the history of gold in the placer environment. In total 18 different morphological characteristics were identified. These were divided on an empirical basis, using the relative degree of mechanical attrition, into proximal and distal characteristics. One morphological characteristic (a porous/spongy surface at high magnification) is considered to be chemical in origin and represent the growth of `new' gold in the placer environment. The geographical distribution of morphological characteristics has been examined and suggests that proximal placer gold is spatially associated with the Loch Doon, Cairsphairn and Fleet granitoids. Quantitative EPMA of the placer gold reveals two compositional populations of placer gold. Examination of the geographical distribution of fineness suggests a loose spatial association between granitoids and low fineness placer gold. Also identified was chemically heterogeneous placer gold. EPMA studies of these heterogeneities allowed estimation of annealing history limits, which suggest that the heterogeneities formed between 150 and 235oC. It is concluded, on the basis of relationships between morphology and composition, that there are two types of placer gold in the Southern Uplands: (i) placer gold which is directly inherited from a hypogene source probably spatially associated with granitoids; and (ii) placer gold that has formed during supergene processes.
Resumo:
Continental red bed sequences are host, on a worldwide scale, to a characteristic style of mineralisation which is dominated by copper, lead, zinc, uranium and vanadium. This study examines the features of sediment-hosted ore deposits in the Permo-Triassic basins of Western Europe, with particular reference to the Cu-Pb-Zn-Ba mineralisation in the Cheshire Basin, northwest England, the Pb-Ba-F deposits of the Inner Moray Firth Basin, northeast Scotland, and the Pb-rich deposits of the Eifel and Oberpfalz regions, West Germany. The deposits occur primarily but not exclusively in fluvial and aeolian sandstones on the margins of deep, avolcanic sedimentary basins containing red beds, evaporites and occasionally hydrocarbons. The host sediments range in age from Permian to Rhaetian and often contain (or can be inferred to have originally contained) organic matter. Textural studies have shown that early diagenetic quartz overgrowths precede the main episode of sulphide deposition. Fluid inclusion and sulphur isotope data have significantly constrained the genetic hypotheses for the mineralisation and a model involving the expulsion of diagenetic fluids and basinal brines up the faulted margins of sedimentary basins is favoured. Consideration of the development of these sedimentary basins suggests that ore emplacement occurred during the tectonic stage of basin evolution or during basin inversion in the Tertiary. ð34S values for barite in the Cheshire Basin range from 13.8% to 19.3% and support the theory that the Upper Triassic evaporites were the principal sulphur source for the mineralisation and provided the means by which mineralising fluids became saline. In contrast, δ34S values for barite in the Inner Moray Firth Basin (mean δ34S = + 29%) are not consistent with simple derivation of sulphur from the evaporite horizons in the basin and it is likely that sulphur-rich Jurassic shales supplied the sulphur for the mineralisation at Elgin. Possible sources of sulphur for the mineralisation in West Germany include hydrothermal vein sulphides in the underlying Devonian sediments and evaporites in the overlying Muschelkalk. Textural studies of the deeply buried sandstones in the Cheshire Basin reveal widespread dissolution and replacement of detrital phases and support the theory that red bed diagenetic processes are responsible for the release of metals into pore fluids. The ore solutions are envisaged as being warm (60-150%C), saline (9-22 wt % equiv NaCl) fluids in which metals were transported as chloride complexes. The distribution of δ34S values for sulphides in the Cheshire Basin (-1.8% to + 16%), the Moray Firth Basin (-4.8% to + 27%) and the German Permo-Triassic Basins (-22.2% to -12.2%) preclude a magmatic source for the sulphides and support the contention that sulphide precipitation is thought to result principally from sulphate reduction processes, although a decrease in temperature of the ore fluid or reaction with carbonates may also be important. Methane is invoked as the principal reducing agent in the Cheshire Basin, whilst terrestrial organic debris and bacterial reduction processes are thought to have played a major part in the genesis of the German ore deposits.
Resumo:
Bibliography: p. 75-80.
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro) tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium( III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[ RuCl(2)(NH(3))(4)] Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl(2)(NH(3))(4)] Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10-100 mu g L(-1)), the cis-[ RuCl(2)(NH(3))(4)] Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).
Resumo:
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH(2))(+) and Ru(salen)(NO) Cl (salen = N, N`-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO) Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation Ru(III) (salen) (OH(2))(2)(+), for which pK(a)`s of 5.9 and 9.1 were determined for the coordinated waters. The pK(a) of the Ru(salen)(NO)(OH(2))+ cation was also determined as 4.5 +/- 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.