965 resultados para CHIP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design of a power efficient microarchitecture for transient fault detection in chip multiprocessors (CMPs) We introduce a new per-core dynamic voltage and frequency scaling (DVFS) algorithm for our architecture that significantly reduces power dissipation for redundant execution with a minimal performance overhead. Using cycle accurate simulation combined with a simple first order power model, we estimate that our architecture reduces dynamic power dissipation in the redundant core by an mean value of 79% and a maximum of 85% with an associated mean performance overhead of only 1:2%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scalable Networks on Chips (NoCs) are needed to match the ever-increasing communication demands of large-scale Multi-Processor Systems-on-chip (MPSoCs) for multi media communication applications. The heterogeneous nature of application specific on-chip cores along with the specific communication requirements among the cores calls for the design of application-specific NoCs for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular networks-on-chip. The proposed method exploits a priori knowledge of the applications communication characteristic to generate an optimized network topology and corresponding routing tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The memory subsystem is a major contributor to the performance, power, and area of complex SoCs used in feature rich multimedia products. Hence, memory architecture of the embedded DSP is complex and usually custom designed with multiple banks of single-ported or dual ported on-chip scratch pad memory and multiple banks of off-chip memory. Building software for such large complex memories with many of the software components as individually optimized software IPs is a big challenge. In order to obtain good performance and a reduction in memory stalls, the data buffers of the application need to be placed carefully in different types of memory. In this paper we present a unified framework (MODLEX) that combines different data layout optimizations to address the complex DSP memory architectures. Our method models the data layout problem as multi-objective genetic algorithm (GA) with performance and power being the objectives and presents a set of solution points which is attractive from a platform design viewpoint. While most of the work in the literature assumes that performance and power are non-conflicting objectives, our work demonstrates that there is significant trade-off (up to 70%) that is possible between power and performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper, we describe a power-efficient architecture for redundant execution on chip multiprocessors (CMPs) which when coupled with our per-core dynamic voltage and frequency scaling (DVFS) algorithm significantly reduces the energy overhead of redundant execution without sacrificing performance. Our evaluation shows that this architecture has a performance overhead of only 0.3% and consumes only 1.48 times the energy of a non-fault-tolerant baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensitivity analysis is an important aspect to be looked into while designing lab-on-a-chip systems. In this paper we will be showing with appropriate design that the best sensitivity of the fluorescence biosensor is achieved for an optimal width of fluidic gap, corresponding to a particular mode spot size. We will be also showing that the sensitivity of the biosensor is affected by efficiency of light coupling, which is influenced by changes in the width of fluidic gap, refractive index of the fluid and higher order modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chips produced by turning a commercial purity magnesium billet were cold compacted and then hot extruded at four different temperatures: 250, 300, 350, and 400 degrees C. Cast billets, of identical composition, were also extruded as reference material. Chip boundaries, visible even after 49: 1 extrusion at 400 degrees C, were observed to suppress grain coarsening. Although 250 degrees C extruded chip-consolidated product showed early onset of yielding and lower ductility, fully dense material (extruded at 400 degrees C) had nearly 40% reduction in grain size with 22% higher yield strength and comparable ductility as that of the reference. The study highlights the role of densification and grain refinement on the compression behavior of chip consolidated specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in technology have increased the number of cores and size of caches present on chip multicore platforms(CMPs). As a result, leakage power consumption of on-chip caches has already become a major power consuming component of the memory subsystem. We propose to reduce leakage power consumption in static nonuniform cache architecture(SNUCA) on a tiled CMP by dynamically varying the number of cache slices used and switching off unused cache slices. A cache slice in a tile includes all cache banks present in that tile. Switched-off cache slices are remapped considering the communication costs to reduce cache usage with minimal impact on execution time. This saves leakage power consumption in switched-off L2 cache slices. On an average, there map policy achieves 41% and 49% higher EDP savings compared to static and dynamic NUCA (DNUCA) cache policies on a scalable tiled CMP, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.