955 resultados para CHICK LIMB BUD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During limb development, expression of the TALE homeobox transcription factor Meis1 is activated by retinoic acid in the proximal-most limb bud regions, which give rise to the upper forelimb and hindlimb. Early subdivision of the limb bud into proximal Meis-positive and distal Meis-negative domains is necessary for correct proximo-distal (P-D) limb development in the chick, since ectopic Meis1 overexpression abolishes distal limb structures, produces a proximal shift of limb identities along the P-D axis, and proximalizes distal limb cell affinity properties. To determine whether Meis activity is also required for P-D limb specification in mammals, we generated transgenic mice ectopically expressing Meis1 in the distal limb mesenchyme under the control of the Msx2 promoter. Msx2:Meis1 transgenic mice display altered P-D patterning and shifted P-D Hox gene expression domains, similar to those previously described for the chicken. Meis proteins function in cooperation with PBX factors, another TALE homeodomain subfamily. Meis-Pbx interaction is required for nuclear localization of both proteins in cell culture, and is important for their DNA-binding and transactivation efficiency. During limb development, Pbx1 nuclear expression correlates with the Meis expression domain, and Pbx1 has been proposed as the main Meis partner in this context; however, we found that Pbx1 deficiency did not modify the limb phenotype of Msx2:Meis1 mice. Our results indicate a conserved role of Meis activity in P-D specification of the tetrapod limb and suggest that Pbx function in this context is either not required or is provided by partners other than Pbx1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Bmp-4, Wnt-5a and Shh gene expressions were compared during early craniofacial development in mice by comparative non-isotopic in situ hybridization. Wild-type C57BL/6J mice were studied at various stages of embryonic development (from 8.5- to 13.5-day-old embryos - E8.5-13.5). During early odontogenesis, transcripts for Bmp-4, Shh and Wnt-5a were co-localised at the tooth initiation stage. At E8.5, Shh mRNA expression was restricted to diencephalon and pharyngeal endoderm. Before maxillae and mandible ossification, Bmp-4 and Wnt-5a signals were detected in the mesenchymal cells and around Meckel`s cartilage. During palatogenesis, Shh was expressed only in the epithelium and Wnt-5a only in the mesenchyme of the elevating palatal shelves. During tongue development, Shh expression was found in mesenchyme, probably contributing to tongue miogenesis, while Wnt-5a signal was in the epithelium, possibly during placode development and papillae formation. Taken together, these findings suggest that Bmp-4, Shh and Wnt-5a gene expressions may act together on the epithelial mesenchymal interactions occurring in several aspects of the early mouse craniofacial development, such as odontogenesis, neuronal development, maxillae and mandible ossification, palatogenesis and tongue formation. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt), limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lmx1b encodes a LIM-homeodomain transcription factor required for dorso-ventral (D-V) patterning in the mesenchyme of the vertebrate limb. In the absence of Lmx1b function, limbs exhibit a bi-ventral pattern indicating that Lmx1b is required for cells to adopt a dorsal cell fate. However, how Lmx1b specifies dorsal cell fates in the mesenchyme of the distal limb is unknown. Lmx1b is initially expressed throughout the dorsal and ventral limb bud mesenchyme, then becomes dorsally restricted around E10.5. At this stage, there is a sharp boundary between Lmx1b expressing and Lmx1b non-expressing cells. How the dorso-ventral Lmx1b expression boundary is formed and maintained is currently unknown. One mechanism that may contribute to establishing and/or maintaining the Lmx1b expression boundary is if the dorsal mesenchyme is a lineage-based compartment, where different groups of non-mingling cells are separated. Compartment formation has been proposed to rely on compartment-specific selector gene activity which functions to restrict cells to a compartment and specifies the identity of cells within that compartment. Based on the evidence that the dorsal limb identity relies on the expression of Lmx1b in the dorsal half of the limb mesenchyme, we hypothesized that Lmx1b might function as a dorsal limb bud mesenchyme selector gene to set up a dorsal compartment. To test this hypothesis, we developed an inducible CreERT2/ loxP based fate mapping approach that permanently marks Lmx1b wild-type and mutant cells and examined the distribution of their descendents in the developing limb. Our data is the first to show that dorso-ventral lineage compartments exist in the limb bud mesenchyme. Furthermore, Lmx1b is required for maintenance of the dorso-ventral compartment lineage boundary. The behavior of Lmx1b mutant cells that cross into the ventral mesenchyme, as well as previous chimera analysis in which mutant cells spread evenly in the ventral limb and form patches in the dorsal side, suggest that cell affinity differences prevent intermingling of dorsal and ventral cells. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The underlying genetic defects of a congenital disease Nail-Patella Syndrome are loss-of-function mutations in the LMX1B gene. Lmx1b encodes a LIM-homeodomain transcription factor that is expressed specifically in the dorsal limb bud mesenchyme. Gain- and loss-of-function experiments suggest that Lmx1b is both necessary and sufficient to specify dorsal limb patterning. However, how Lmx1b coordinates patterning of the dorsal tissues in the limb, including muscle, skeleton and connective tissues, remains unknown. One possibility is that each tissue specifies its own pattern cell-autonomously, i.e., Lmx1b is expressed in tissues in which it functions and different tissues do not communicate with each other. Another possibility is that tissues that express Lmx1b interact with adjacent tissues and provide patterning information thereby directing the development of tissues non-cell-autonomously. Previous results showed that Lmx1b is expressed in limb connective tissue and skeleton, but is not expressed in muscle tissue. Moreover, muscles and muscle connective tissue are closely associated during development. Therefore, we hypothesize that Lmx1b controls limb muscle dorsal-ventral (DV) patterning through muscle connective tissue, but regulates skeleton and tendon/ligament development cell-autonomously. ^ To test this hypothesis, we first examined when and where the limb dorsal-ventral asymmetry is established during development. Subsequently, conditional knockout and overexpression experiments were performed to delete or activate Lmx1b in different tissues within the limb. Our results show that deletion of Lmx1b from whole limb mesenchyme results in all dorsal tissues, including muscle, tendon/ligament and skeleton, transforming into ventral structures. Skeleton-specific knockout of Lmx1b led to the dorsal duplication of distal sesamoid and metacarpal bones, but did not affect the pattern formation of other tissues, suggesting that Lmx1b controls skeleton development cell-autonomously. In addition, this skeleton-specific pattern alteration only occurs in distal limb tissues, not proximal limb tissues, indicating different regulatory mechanisms operate along the limb proximal-distal axis. Moreover, skeleton-specific ectopic expression of Lmx1b reveals a complementary skeletal-specific dorsalized phenotype. This result supports a cell-autonomous role for Lmx1b in dorsal-ventral skeletal patterning. This study enriched our understanding of limb development, and the insights from this research may also be applicable for the development of other organs. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcriptional enhancers are genomic DNA sequences that contain clustered transcription factor (TF) binding sites. When combinations of TFs bind to enhancer sequences they act together with basal transcriptional machinery to regulate the timing, location and quantity of gene transcription. Elucidating the genetic mechanisms responsible for differential gene expression, including the role of enhancers, during embryological and postnatal development is essential to an understanding of evolutionary processes and disease etiology. Numerous methods are in use to identify and characterize enhancers. Several high-throughput methods generate large datasets of enhancer sequences with putative roles in embryonic development. However, few enhancers have been deleted from the genome to determine their roles in the development of specific structures, such as the limb. Manipulation of enhancers at their endogenous loci, such as the deletion of such elements, leads to a better understanding of the regulatory interactions, rules and complexities that contribute to faithful and variant gene transcription – the molecular genetic substrate of evolution and disease. To understand the endogenous roles of two distinct enhancers known to be active in the mouse embryo limb bud we deleted them from the mouse genome. I hypothesized that deletion of these enhancers would lead to aberrant limb development. The enhancers were selected because of their association with p300, a protein associated with active transcription, and because the human enhancer sequences drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. To confirm that the orthologous mouse enhancers, mouse 280 and 1442 (M280 and M1442, respectively), regulate expression in the developing limb we generated stable transgenic lines, and examined lacZ expression. In M280-lacZ mice, expression was detected in E11.5 fore- and hindlimbs in a region that corresponds to digits II-IV. M1442-lacZ mice exhibited lacZ expression in posterior and anterior margins of the fore- and hindlimbs that overlapped with digits I and V and several wrist bones. We generated mice lacking the M280 and M1442 enhancers by gene targeting. Intercrosses between M280 -/+ and M1442 -/+, respectively, generated M280 and M1442 null mice, which are born at expected Mendelian ratios and manifest no gross limb malformations. Quantitative real-time PCR of mutant E11.5 limb buds indicated that significant changes in transcriptional output of enhancer-proximal genes accompanied the deletion of both M280 and M1442. In neonatal null mice we observed that all limb bones are present in their expected positions, an observation also confirmed by histology of E18.5 distal limbs. Fine-scale measurement of E18.5 digit bone lengths found no differences between mutant and control embryos. Furthermore, when the developmental progression of cartilaginous elements was analyzed in M280 and M1442 embryos from E13.5-E15.5, transient development defects were not detected. These results demonstrate that M280 and M1442 are not required for mouse limb development. Though M280 is not required for embryonic limb development it is required for the development and/or maintenance of body size – adult M280 mice are significantly smaller than control littermates. These studies highlight the importance of experiments that manipulate enhancers in situ to understand their contribution to development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed at characterizing the Sonic hedgehog (shh) gene in newt limbs, which encodes a signaling molecule of the zone of polarizing activity (ZPA) responsible for determining the anterior–posterior axis of the embryonic chicken and mouse limbs. The reverse transcription–PCR showed that adult newt regenerating limbs express shh genes. In situ hybridization experiments demonstrated that shh genes were expressed in mesenchymal cells of the posterior region of both embryonic buds and regenerating blastemas of newt limbs, strongly suggesting the presence of ZPA in these tissues. Experiments of the axial reversal graft of blastemas further supported this suggestion. The grafted blastemas regenerated supernumerary limbs, and this has been explained by three models: the polar coordinate model, the boundary model, and the polarizing zone model. In favor of the third model, the shh gene was expressed not only in the original region (new anterior region) of the graft, but also ectopically in the other region (new posterior region) of the same graft. This study implies that the regenerating limb blastema produces ZPA as the signaling center of the AP patterning as in the developing limb bud and, therefore, supports the notion that the limb regeneration recapitulates the limb development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Follistatin is known to antagonise the function of several members of the TGF-beta family of secreted signalling factors, including Myostatin, the most powerful inhibitor of muscle growth characterised to date. In this study, we compare the expression of Myostatin and Follistatin during chick development and show that they are expressed in the vicinity or in overlapping domains to suggest possible interaction during muscle development. We performed yeast and mammalian two-hybrid studies and show that Myostatin and Follistatin interact directly. We further show that single modules of the Follistatin protein cannot associate with Myostatin suggesting that the entire protein is required for the interaction. We analysed the interaction kinetics of the two proteins and found that Follistatin binds Myostatin with a high affinity of 5.84 x 10(-10) M. We next tested whether Follistatin suppresses Myostatin activity during muscle development. We confirmed our previous observation that treatment of chick limb buds with Myostatin results in a severe decrease in the expression of two key myogenic regulatory genes Pax-3 and MyoD. However, in the presence of Follistatin, the Myostatin-mediated inhibition of Pax-3 and MyoD expression is blocked. We additionally show that Myostatin inhibits terminal differentiation of muscle cells in high-density cell cultures of limb mesenchyme (micromass) and that Follistatin rescues muscle differentiation in a concentration-dependent manner. In summary, our data suggest that Follistatin antagonises Myostatin by direct protein interaction, which prevents Myostatin from executing its inhibitory effect on muscle development. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the “In–Out” mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. Methods High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Results Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A similar to 11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Conclusions Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

372 osteochondrodysplasias and genetically determined dysostoses were reported in 2007 [Superti-Furga and Unger, 2007]. For 215 of these conditions, an association with one or more genes can be stated, while the molecular changes for the remaining syndromes remain illusive to date. Thus, the present dissertation aims at the identification of novel genes involved in processes regarding cartilage/ bone formation, growth, differentiation and homeostasis, which may serve as candidate genes for the above mentioned conditions. Two different approaches were undertaken. Firstly, a high throughput EST sequencing project from a human fetal cartilage library was performed to identify novel genes in early skeletal development (20th week of gestation until 2nd year of life) that could be investigated as potential candidate genes. 5000 EST sequences were generated and analyzed representing 1573 individual transcripts, corresponding to known (1400) and to novel, yet uncharacterized genes (173). About 7% of the proteins were already described in cartilage/ bone development or homeostasis, showing that the generated library is tissue specific. The remaining profile of this library was compared to previously published libraries from different time points (8th–12th, 18th–20th week and adult human cartilage) that also showed a similar distribution, reflecting the quality of the presented library analyzed. Furthermore, three potential candidate genes (LRRC59, CRELD2, ZNF577) were further investigated and their potential involvement in skeletogenesis was discussed. Secondly, a disease-orientated approach was undertaken to identify downstream targets of LMX1B, the gene causing Nail-Patella syndrome (NPS), and to investigate similar conditions. Like NPS, Genitopatellar syndrome (GPS) is characterized by aplasia or hypoplasia of the patella and renal anomalies. Therefore, six GPS patients were enrolled in a study to investigate the molecular changes responsible for this relatively rare disease. A 3.07 Mb deletion including LMX1B and NR5A1 (SF1) was found in one female patient that showed features of both NPS and GPS and investigations revealed a 46,XY karyotype and ovotestes indicating true hermaphroditism. The microdeletion was not seen in any of the five other patients with GPS features only, but a potential regulatory element between the two genes cannot be ruled out yet. Since Lmx1b is expressed in the dorsal limb bud and in podocytes, proteomic approaches and expression profiling were performed with murine material of the limbs and the kidneys to identify its downstream targets. After 2D-gel electrophoresis with protein extracts from E13.5 fore limb buds and newborn kidneys of Lmx1b wild type and knock-out mice and mass spectrometry analysis, only two proteins, agrin and carbonic anhydrase 2, remained of interest, but further analysis of the two genes did not show a transcriptional down regulation by Lmx1b. The focus was switched to expression profiles and RNA from newborn Lmx1b wild type and knock-out kidneys was compared by microarray analysis. Potential Lmx1b targets were almost impossible to study, because of the early death of Lmx1b deficient mice, when the glomeruli, containing podocytes, are still immature. Because Lmx1b is also expressed during limb development, RNA from wild type and knock-out Lmx1b E11.5 fore limb buds was investigated by microarray, revealing four potential Lmx1b downstream targets: neuropilin 2, single-stranded DNA binding protein 2, peroxisome proliferative activated receptor, gamma, co-activator 1 alpha, and short stature homeobox 2. Whole mount in situ hybridization strengthened a potential down regulation of neuropilin 2 by Lmx1b, but further investigations including in situ hybridization and protein-protein interaction studies will be needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lack of beta1 integrins on chondrocytes leads to severe chondrodysplasia associated with high mortality rate around birth. To assess the impact of beta1 integrin-mediated cell-matrix interactions on the function of adult knee joints, we conditionally deleted the beta1 integrin gene in early limb mesenchyme using the Prx1-cre transgene. Mutant mice developed short limbed dwarfism and had joint defects due to beta1 integrin deficiency in articular regions. The articular cartilage (AC) was structurally disorganized, accompanied by accelerated terminal differentiation, altered shape, and disrupted actin cytoskeleton of the chondrocytes. Defects in chondrocyte proliferation, cytokinesis, and survival resulted in hypocellularity. However, no significant differences in cartilage erosion, in the expression of matrix-degrading proteases, or in the exposure of aggrecan and collagen II cleavage neoepitopes were observed between control and mutant AC. We found no evidence for disturbed activation of MAPKs (ERK1/2, p38, and JNK) in vivo. Furthermore, fibronectin fragment-stimulated ERK activation and MMP-13 expression were indistinguishable in control and mutant femoral head explants. The mutant synovium was hyperplastic and frequently underwent chondrogenic differentiation. beta1-null synoviocytes showed increased proliferation and phospho-focal adhesion kinase expression. Taken together, deletion of beta1 integrins in the limb bud results in multiple abnormalities of the knee joints; however, it does not accelerate AC destruction, perturb cartilage metabolism, or influence intracellular MAPK signaling pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past two decades have greatly improved our knowledge of vertebrate skeletal morphogenesis. It is now clear that bony morphology lacks individual descriptive specification and instead results from an interplay between positional information assigned during early limb bud deployment and its “execution” by highly conserved cellular response programs of derived connective tissue cells (e.g., chondroblasts and osteoblasts). Selection must therefore act on positional information and its apportionment, rather than on more individuated aspects of presumptive adult morphology. We suggest a trait classification system that can help integrate these findings in both functional and phylogenetic examinations of fossil mammals and provide examples from the human fossil record.