992 resultados para CHEMICAL SPECIATION
Resumo:
The chemical speciation of both metals and non-metals, the use of polarographic techniques, and application to the study of the chemistry of anoxic waters are considered. In the first part of the paper unfamiliar terminology is explained and then an example of simple lake chemistry is presented to illustrate why the concept of speciation is necessary.
Resumo:
The uptake of metals by earthworms occurs predominantly via the soil pore water, or via an uptake route which is related to the soil pore water metal concentration. However, it has been suggested that the speciation of the metal is also important. A novel technique is described which exposes Eisenia andrei Bouche to contaminant bearing solutions in which the chemical factors affecting its speciation may be individually and systematically manipulated. In a preliminary experiment, the LC50 for copper nitrate was 0.046 mg l(-1) (95 % confidence intervals: 0.03 and 0.07 mg l(-1)). There was a significant positive correlation between earthworm mortality and bulk copper concentration in solution (R-2 = 0.88, P less than or equal to 0.001), and a significant positive increase in earthworm tissue copper concentration with increasing copper concentration in solution (R-2 = 0.97, P less than or equal to 0.001). It is anticipated that quantifying the effect of soil solution chemical speciation on copper bioavailability will provide an excellent aid to understanding the importance of chemical composition and the speciation of metals, in the calculation of toxicological parameters.
Resumo:
A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO3 and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal–organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5–10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg−1 in the control to 42 mg kg−1 with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg−1) and the Fe and Mn oxides (from 443 to 277 mg kg−1) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.
Resumo:
Effect of Tb3+ on Ca2+ speciation in human plasma was studied by means of the computer program of MINTEQA2. When Tb3+ ions are not added into the system, Ca2+ ions mostly distribute in free Ca2+ (74.7%) and the surplus distributes in Ca2+ complexes, such as [CaHCO3](+) (7.9%),[Ca(Lac)](+) (6.4%), CaHPO4 (1.3%), [CaHistidinateThreoninateH(3)](3+) (2.4%), [CaCitrateHistidinateH(2)] (2.3%) and CaCO3 (1.1%). Tb3+ can compete with Ca2+ for inorganic as well as biological ligands. An increase of concentration of Tb3+ in the system results in an increase of content of free Ca2+ and a decrease of contents of Ca2+ complexes.
Resumo:
A multi-phase model was developed and Tb(III) speciation in human blood plasma was studied. At a concentration below 3.744x 10(-4) mol/L (or at the concentration), Tb(III) is mostly bound to phosphate to form precipitate of TbPO4. As the concentration of Tb(III) increases, phosphate is exceeded and another kind of precipitate of Tb-2(CO3)(3) appears. Among soluble Tb(III) species, Tb(III) mainly distribute in [Tb (Tf)] at low concentration and in [Tb (HSAA, [Tb-2 (Tf)], [Th (IgG)], [Tb (Lactate)](2+), [Tb (CitArgH)] and free Tb(III) at high concentration.
Resumo:
The success of sequestration-based remediation strategies will depend on detailed information, including the predominant U species present as sources before biostimulation and the products produced during and after in situ biostimulation. We used X-ray absorption spectroscopy to determine the valence state and chemical speciation of U in sediment samples collected at a variety of depths through the contaminant plume at the Field Research Center at Oak Ridge, TN, before and after approximately 400 days of in situ biostimulation, as well as in duplicate bioreduced sediments after 363 days of resting conditions. The results indicate that U(VI) in subsurface sediments was partially reduced to 10–40% U(IV) during biostimulation. After biostimulation, U was no longer bound to carbon ligands and was adsorbed to Fe/Mn minerals. Reduction of U(VI) to U(IV) continued in sediment samples stored under anaerobic condition at <4 °C for 12 months, with the fraction of U(IV) in sediments more than doubling and U concentrations in the aqueous phase decreasing from 0.5-0.74 to <0.1 µM. A shift of uranyl species from uranyl bound to phosphorus ligands to uranyl bound to carbon ligands and the formation of nanoparticulate uraninite occurred in the sediment samples during storage.
Resumo:
Total-arsenic (T-As) and arsenic (As) species were determined by HPLC-HG-AAS in ten different confectionery products: nine throat pearls and an industrial licorice extract. The Spanish legislation sets a maximum total-As content in confectionery products at 0.1 mu g/g. T-As concentrations were above the permitted maximum limit (mean of 0.219 +/- 0.008 mu g/g). All As was present in the form of toxic inorganic species. The daily consumption of licorice-confections in Spain is 1.1 g and leads to a daily intake of inorganic-As of 0.23 mu g (0.2% of the tolerable daily intake of inorganic As for a teenager). These experimental results proved that even though high total-As concentrations were found in licorice throat pearls and that all the As found was present as inorganic species, no significant risks for health are expected just by considering this As source.
Resumo:
Mangrove forests are best developed on tropical shorelines where there is an extensive intertidal zone, with an abundant supply of fine-grained sediment. It receives a mixture of liable and refractory organic and inorganic phosphorus compounds from the overlying water and the surrounding landmasses. Organic phosphorus is not available for mangrove plant nutrition. While inorganic phosphate represents the largest potential pool of plant-available and which are bound in the form of Ca, Fe and Al phosphate. It deals with the scientific investigations on mangrove systems in the Kerala coastline and to investigate nutrient distribution of mangrove ecosystems of greater Cochin area. It discusses the description of study areas such as Murikkumpadam-Vypeen Island and Aroor. Then it deals with the spatial and seasonal distribution of dissolved ammonia, nitrite, nitrate, inorganic phosphate, organic phosphate and the total phosphorus in surface waters of mangrove fringed creeks. Then it discusses the geochemical compositions of mangrove-fringed sediments and also the chemical speciation of phosphorus in sediment cores.
Resumo:
This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.