998 resultados para CHEMICAL ELEMENTS
Resumo:
Gracilaria Greville is a genus of seaweed that is economically explored by the cosmetic, pharmaceutical and food industries. One of the biggest problems associated with growing Gracilaria is the discharge of heavy metals into the marine environment. The absorption of heavy metals was investigated with the macroalga Gracilaria tenuistipitata Zhang et Xia, cultivated in a medium containing copper (Cu) and cadmium (Cd). In biological samples, EC50 concentrations of 1 ppm for cadmium and 0.95 ppm for copper were used. These concentrations were based on seaweed growth curves obtained over a period of six days in previous studies. ICP-AES was used to determine the amount of metal that seaweeds absorbed during this period. G. tenuistipitata was able to bioaccumulate both metals, about 17% of copper and 9% of cadmium. Basal natural levels of Cu were found in control seaweeds and in G. tenuistipitata exposed to Cd. In addition, the repertoire of other important chemical elements, as well as their concentrations, was determined for G. tenuistipitata and two other important seaweeds, G. birdiae Plastino & Oliveira and G. domingensis (Kützing) Sonder ex Dickie, collected in natural environments on the Brazilian shore.
Resumo:
The k(0)-method instrumental neutron activation analysis (k(0)-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, Sao Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k(0)-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mgkg(-1)), Co (max= 0.47 mg kg(-1)), Cr (max =68 mg kg(-1)), Hg (max =2.79 mg kg(-1)), Sb (max= 0.20 mg kg(-1)), Se (max=1.3 mg kg(-1)) and Zn (max =192 mg kg(-1)) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k(0)-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Epiphytic bromeliads have been used as biomonitors of air pollution since they have specialized structures in leaves for absorbing humidity and nutrients available in the atmosphere. Leaves of five bromeliad species were collected in the conservation unit Parque Estadual Ilha do Cardoso, Sao Paulo State, Brazil, and analyzed by INAA. Vriesea carinata was the species showing most accumulation, with the highest mass fractions of K, Na, Rb and Zn. Similar results were previously found for the same species collected in the dense ombrophilous forest. Chemical composition of bromeliads provided an indication of the atmosphere status in the conservation unit.
Resumo:
Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit.
Resumo:
The accumulation of chemical elements in biological compartments is one of the strategies of tropical species to adapt to a low-nutrient soil. This study focuses on the Atlantic Forest because of its eco-environmental importance as a natural reservoir of chemical elements. About 20 elements were determined by INAA in leaf, soil, litter and epiphyte compartments. There was no seasonality for chemical element concentrations in leaves, which probably indicated the maintainance of chemical elements in this compartment. Considering the estimated quantities, past deforestation events could have released large amounts of chemical elements to the environment.
Resumo:
Honey is a food used since the most remote times, appreciated for its characteristic flavor, considerable nutritional value and medicinal properties; however, little information exists about the presence of chemical elements in it. The objectives of this work were to determine the chemical elements present in 38 honey samples, collected directly from beekeepers from the State of Piauí, Brazil and to verify whether they presented any contamination. The chemical elements were determined by means of Total Reflection X-ray Fluorescence. The means of three replicates were: K (109.671 ± 17.487), Ca (14.471 ± 3.8797), Ti (0.112 ± 0.07), Cr (0.196 ± 0.11), Mn (0.493 ± 0.103), Fe (1.722 ± 0.446), Co (0.038), Ni (0.728 ± 0.706), Cu (0.179 ± 0.0471), Zn (0.967 ± 0.653), Se (not detected), Br (not detected), Rb (0.371 ± 0.097), Sr (0.145 ± 0.45), Ba (11.681), Hg (not detected), and Pb (0.863) µg g-1.
Resumo:
Samples of water, suspended solids, and bottom sediments from the Madeira River, Rondonia state, Brazil, were physically and chemically analyzed to investigate the actual Hg mobilization in the aquatic environment and compare it with that of other heavy metals and elements in the area. Two dimensionless Hg preference ratios were defined, expressing (1) the ratio of Hg and other elements in the liquid phase divided by the ratio of Hg and other elements in bottom sediments (P(l.phase)) and (2) the ratio of Hg and other elements in the particulate matter divided by the ratio of Hg and other elements in bottom sediments (P(s.solids)). These preference ratios are useful for comparing Hg transport in three different phases (liquid, particulate matter, and bottom sediments). They also were applicable to any analyzed elementin the area studied, because they generated an almost constant value when the maximum calculated was divided by the minimum (P(l.phase) = 2931; P(s.solids) = 84) and because of their sensitivity to the dominance of sorption processes by Fe oxides and hydroxides. Mercury could be transported preferentially to other analyzed elements in the particulate phase only if its concentration reached values at least 10(4)-fold higher than those expected or quantified in the area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An additional ore field in the central part of the MARhas been discovered. Together with previously discovered Logachev (14°45'N) and Ashadze (12°58'N) ore fields, the new ore field constitutes a cluster with preliminarily estimated total ore reserve of >10 Mt, which is comparable with large continental massive sulfide deposits.