996 resultados para CHAPERONE ACTIVITY
Resumo:
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na(+)-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.
Resumo:
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 Å resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a “minichaperone.” This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.
Resumo:
Apoptotic DNA fragmentation is mediated by a caspase-activated DNA fragmentation factor (DFF)40. Expression and folding of DFF40 require the presence of DFF45, which also acts as a nuclease inhibitor before DFF40 activation by execution caspases. The N-terminal domains (NTDs) of both proteins are homologous, and their interaction plays a key role in the proper functioning of this two-component system. Here we report that the NTD of DFF45 alone is unstructured in solution, and its folding is induced upon binding to DFF40 NTD. Therefore, folding of both proteins regulates the formation of the DFF40/DFF45 complex. The solution structure of the heterodimeric complex between NTDs of DFF40 and DFF45 reported here shows that the mutual chaperoning includes the formation of an extensive network of intermolecular interactions that bury a hydrophobic cluster inside the interface, surrounded by intermolecular salt bridges.
Resumo:
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Resumo:
Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.
Resumo:
Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase) is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS) and two PDZ domains (PDZ1 and PDZ2). In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The Ssel/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a carboxyl-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an amino-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Δ phenotypes. Surprisingly, all mutants predicted to abolish ATP hydrolysis complemented the temperature sensitivity of sse1Δ, whereas mutations in predicted ATP binding residues were non-functional. Remarkably, the two domains of Ssel when expressed in trans functionally complement the sse1Δ growth phenotype and interact by coimmunoprecipitation analysis, indicative of a novel type of interdomain communication. ^ Relatively little is known regarding the interactions and cellular functions of Ssel. Through co-immunoprecipitation analysis, we found that Ssel forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. The ATPase domains of Ssel and the Hsp70s were found to be critical for interaction as inactivating point mutations severely reduced interaction efficiency. Ssel stimulated Ssal ATPase activity synergistically with the co-chaperone Ydj1 via a novel nucleotide exchange activity. Furthermore, FES1, another Ssa nucleotide exchange factor, can functionally substitute for SSE1/2 when overexpressed, suggesting that Hsp70 nucleotide exchange is the fundamental role of the Sse proteins in yeast, and by extension, the Hsp110 homologs in mammals. ^ Cells lacking SSE1 were found to accumulate prepro-α-factor, but not the cotranslationally imported protein Kar2, similar to mutants in the Ssa chaperones. This indicates that the interaction between Ssel and Ssa is functionally significant in vivo. In addition, sse10 cells are compromised for cell wall strength, likely a result of decreased Hsp90 chaperone activity with the cell integrity MAP kinase SIC. Taken together, this work established that the Hsp110 family must be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.^
Resumo:
In the highly concentrated environment of the cell, polypeptide chains are prone to aggregation during synthesis (as nascent chains await the emergence of the remainder of their folding domain), translocation, assembly, and exposure to stresses that cause previously folded proteins to unfold. A large and diverse group of proteins, known as chaperones, transiently associate with such folding intermediates to prevent aggregation, but in many cases the specific functions of individual chaperones are still not clear. In vivo, Hsp90 (heat shock protein 90) plays a role in the maturation of components of signal transduction pathways but also exhibits chaperone activity with diverse proteins in vitro, suggesting a more general function. We used a unique temperature-sensitive mutant of Hsp90 in Saccharomyces cerevisiae, which rapidly and completely loses activity on shift to high temperatures, to examine the breadth of Hsp90 functions in vivo. The data suggest that Hsp90 is not required for the de novo folding of most proteins, but it is required for a specific subset of proteins that have greater difficulty reaching their native conformations. Under conditions of stress, Hsp90 does not generally protect proteins from thermal inactivation but does enhance the rate at which a heat-damaged protein is reactivated. Thus, although Hsp90 is one of the most abundant chaperones in the cell, its in vivo functions are highly restricted.
Resumo:
ClpA, a newly discovered ATP-dependent molecular chaperone, remodels bacteriophage P1 RepA dimers into monomers, thereby activating the latent specific DNA binding activity of RepA. We investigated the mechanism of the chaperone activity of ClpA by dissociating the reaction into several steps and determining the role of nucleotide in each step. In the presence of ATP or a nonhydrolyzable ATP analog, the initial step is the self-assembly of ClpA and its association with inactive RepA dimers. ClpA-RepA complexes form rapidly and at 0°C but are relatively unstable. The next step is the conversion of unstable ClpA-RepA complexes into stable complexes in a time- and temperature-dependent reaction. The transition to stable ClpA-RepA complexes requires binding of ATP, but not ATP hydrolysis, because nonhydrolyzable ATP analogs satisfy the nucleotide requirement. The stable complexes contain approximately 1 mol of RepA dimer per mol of ClpA hexamer and are committed to activating RepA. In the last step of the reaction, active RepA is released upon exchange of ATP with the nonhydrolyzable ATP analog and ATP hydrolysis. Importantly, we discovered that one cycle of RepA binding to ClpA followed by ATP-dependent release is sufficient to convert inactive RepA to its active form.
Resumo:
The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.
Resumo:
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.