993 resultados para CHANNEL WIDTH
Resumo:
A channel router is an important design aid in the design automation of VLSI circuit layout. Many algorithms have been developed based on various wiring models with routing done on two layers. With the recent advances in VLSI process technology, it is possible to have three independent layers for interconnection. In this paper two algorithms are presented for three-layer channel routing. The first assumes a very simple wiring model. This enables the routing problem to be solved optimally in a time of O(n log n). The second algorithm is for a different wiring model and has an upper bound of O(n2) for its execution time. It uses fewer horizontal tracks than the first algorithm. For the second model the channel width is not bounded by the channel density.
Resumo:
Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect.
Resumo:
Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≅0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strategies play a pivotal role but remain too coarse-grained. As a solution, this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks. This approach, named SFCA (Sub-carrier Fine-grained Channel Access), adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer. It allocates the frequency resource with a sub-carrier granularity, which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency. The MAC layer uses a frequency-time domain backoff scheme, which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision, resulting in higher access probability for the contending nodes. SFCA is compared with FICA (an established access scheme) showing significant outperformance. Finally we present results for next generation 802.11ac WiFi networks.
Resumo:
In November 2006, the flood of record on the upper Nisqually River destroyed part of Sunshine Point Campground in Mount Rainier National Park, Washington. The Nisqually River migrated north and reoccupied five acres of its floodplain; Tahoma Creek partially avulsed into the west floodplain, topping banks of an undersized channel and flooding the campground. I assessed hazards to infrastructure at the old campground location, where the Park proposes to rebuild the remaining campground roads and sites. This assessment focuses on two major hazards: northward Nisqually River migration, which may reincorporate the floodplain into the river destroying infrastructure; and Tahoma Creek avulsions, which may flood the campgroud and deposit sediment burying campground infrastructure. I quantify northward migration by: estimating migration rates and changes to channel width; evaluating river occupation of the pre- and post-2006 campground; and estimating scour depths at revetments protecting the campground. I digitized the Nisqually River channels and channel centerlines from maps and images between 1955 and 2013 into a GIS, which I used to estimate migration rate and river width changes. Centerline migration rates average 9 ft/yr along the length of the Nisqually River study reach; at Sunshine Point lateral migration rates average 11 ft/yr. Maximum migration along the study reach was 19 ft/yr between 2006 and 2009. Greater than average migration rates and channel widths correspond to river confluences and include the Tahoma Creek confluence at Sunshine Point. To determine historical channel locations and the frequency that the river occupied different parts of its floodplain, I digitized the river from maps and images between 1903 and 2013. The Nisqually River flows through Sunshine Point Campground in eight out of 15 historical images. I assess scour at revetments protecting infrastructure from the Nisqually River during a 100-year recurrence interval flood using measured cross-sections. During a 100-year flood, the Nisqually River may scour up to 10 feet below the bed elevation. These scour depths can destabilize critical revetments leaving loose unconsolidated riverbanks exposed to Nisqually River flows. To determine the causes, locations, and frequency of flood hazards from Tahoma Creek avulsions, I field map avulsion channels and compare the results with imagery and channel width changes between 1955 and 2013. Mapped avulsion channels occur with swaths of dead vegetation or nascent vegetation; both dead and recent vegetation are visibly distinct from surrounding vegetation in aerial images. Times of changes to these vegetation anomalies correspond to increases in Tahoma Creek channel width. Avulsions have occurred at least three times in the study period: pre-1955, between 1979 and 1984, and in 2006. The 1984 and 2006 avulsions both occur after increases in Tahoma Creek reach averaged width. The NPS is considering two options to rebuild Sunshine Point Campground, both at the same location. The hazards posed by the Nisqually River and Tahoma Creek at Sunshine Point will affect both construction options equally. Migration hazards to the campground may be reduced by limiting the proposed campground infrastructure to an elevated ridge that has not been occupied by the Nisqually River since 1903. The hazards of damage from migration may be reduced by revetments, which were effective in preventing northward Nisqually River migration in 1959 and 1965. Tahoma Creek avulsions are related increased of Tahoma Creek reach averaged widths, which are near a 58- year maximum, and occurred during a 10-year flood in 1984. The campground may be as susceptible to flooding from avulsions during as little as a 10-year flood. A large avulsion may occur with the next significant Tahoma Creek width increase. Glacial retreat has been shown to increase debris flow activity and increase sediment delivery to Mount Rainier rivers. Increased sediment discharge has been correlated with aggradation, which will further encourage Tahoma Creek avulsions.
Resumo:
Present work examines numerically the asymmetric behavior of hydrogen/air flame in a micro-channel subjected to a non-uniform wall temperature distribution. A high resolution (with cell size of 25 μm × 25 μm) of two-dimensional transient Navier–Stokes simulation is conducted in the low-Mach number formulation using detailed chemistry evolving 9 chemical species and 21 elementary reactions. Firstly, effects of hydrodynamic and diffusive-thermal instabilities are studied by performing the computations for different Lewis numbers. Then, the effects of preferential diffusion of heat and mass transfer on the asymmetric behavior of the hydrogen flame are analyzed for different inlet velocities and equivalence ratios. Results show that for the flames in micro-channels, interactions between thermal diffusion and molecular diffusion play major role in evolution of a symmetric flame into an asymmetric one. Furthermore, the role of Darrieus–Landau instability found to be minor. It is also found that in symmetric flames, the Lewis number decreases behind the flame front. This is related to the curvature of flame which leads to the inclination of thermal and mass fluxes. The mass diffusion vectors point toward the walls and the thermal diffusion vectors point toward the centerline. Asymmetric flame is observed when the length of flame front is about 1.1–1.15 times of the channel width.
Resumo:
The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this selection of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.
Resumo:
A parametric study of the flood wave propagation problem is made, based on numerical solution of the nondimensionalized unsteady flow equations of open channels. The propagation of a sinusoidal flood wave in a prismatic channel is studied for uniform initial flow. The governing parameters (initial uniform flow Froude number, wave amplitude, wave duration, channel width parameter and side slope) are varied over a wide range. In all, 49 cases are studied. Effects of these governing parameters on the subsidence of stage and discharge and the speed of the wave peak are described in detail. The relative wave amplitude is found to vary linearly with F0, the initial uniform flow froude number, for lower F0 values. Wave duration has a very pronounced effect on subsidence with greater subsidence at lower wave duration values.
Resumo:
The linear stability analysis of a plane Couette flow of viscoelastic fluid have been studied with the emphasis on two dimensional disturbances with wave number k similar to Re-1/2, where Re is Reynolds number based on maximum velocity and channel width. We employ three models to represent the dilute polymer solution: the classical Oldroyd-B model, the Oldroyd-B model with artificial diffusivity and the non-homogeneous polymer model. The result of the linear stability analysis is found to be sensitive to the polymer model used. While the plane Couette flow is found to be stable to infinitesimal disturbances for the first two models, the last one exhibits a linear instability.
Resumo:
We experimentally study the effect of having hinged leaflets at the jet exit on the formation of a two-dimensional counter-rotating vortex pair. A piston-cylinder mechanism is used to generate a starting jet from a high-aspect-ratio channel into a quiescent medium. For a rigid exit, with no leaflets at the channel exit, the measurements at a central plane show that the trailing jet in the present case is never detached from the vortex pair, and keeps feeding into the latter, unlike in the axisymmetric case. Passive flexibility is introduced in the form of rigid leaflets or flaps that are hinged at the exit of the channel, with the flaps initially parallel to the channel walls. The experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia, as these limiting structural properties permit the largest flap openings. Using this arrangement, we start the flow and measure the flap kinematics and the vorticity fields for different flap lengths and piston velocity programs. The typical motion of the flaps involves a rapid opening and a subsequent more gradual return to its initial position, both of which occur when the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, two additional pairs of vortices are formed because of the motion of the flaps, leading to the ejection of a total of up to three vortex pairs from the hinged exit. The flaps' length (L-f) is found to significantly affect flap motions when plotted using the conventional time scale L/d, where L is the piston stroke and d is the channel width. However, with a newly defined time scale based on the flap length (L/L-f), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/L-f, there are differences in the distribution of the ejected vorticity even for the same L/L-f. Such a redistribution of vorticity can lead to important changes in the overall properties of the flow, and it gives us a better understanding of the importance of exit flexibility in such flows.
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.
Resumo:
Ecological responses to dam construction are poorly understood, especially for downstream benthic algal communities. We examined the responses of benthic algal communities in downstream reaches of a tributary of the Xiangxi River, China, to the construction of a small run-of-river dam. From February 2003 to August 2006, benthic algae, chemical factors, and habitat characteristics were monitored upstream and downstream of the dam site. This period spanned 6 mo before dam construction and 37 mo after dam construction. Benthic algal sampling yielded 199 taxa in 59 genera that belonged to Bacillariophyta, Chlorophyta, and Cyanophyta. Some physical factors (flow velocity, water depth, and channel width) and 3 algal metrics (diatom species richness, Margalef diversity, and % erect individuals) were significantly affected by the dam construction, whereas chemical factors (e.g., NH4-N, total N, SiO2) were not. Nonmetric multidimensional scaling (NMS) ordinations showed that overall algal assemblage structure downstream of the dam sites was similar to that of upstream control sites before dam construction and for 1 year after dam construction (p > 0.05). However, sites belonging to upstream and downstream reaches were well separated on NMS axis 1 during the 2(nd) and 3(rd) years after dam construction. Our results suggest that impacts of dam construction on benthic algal communities took 2 to 3 y to emerge. Further development of a complete set of indicators is needed to address the impact of small-dam construction. Our observations underscore the need for additional studies that quantify ecological responses to dam construction over longer time spans.
Resumo:
Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.