968 resultados para CHANGING ENVIRONMENTS
Resumo:
The professional identity of management accountants (MAs) is evolving. According to 8,727 descriptors expressed by 1,158 participants, a range of characteristics of MAs are competing in shaping the identity of future MAs. Respondents strongly valued qualities such as professional principles, hard work, intelligence, analytical and forward thinking in MAs. Further, more innovative, dynamic and people-oriented qualities were strongly suggested for future MAs, with roles relating to multi-skilled business integrator, business partner/advisor, leader, change agent, and decision enabler/maker. Cultivating leadership qualities in the management accounting profession is critical according to participants. Projecting a positive image of the profession and CIMA, and innovative training in management and leadership skills can further support MAs to meet future challenges. Most of all, understanding business and continued personal development by individual MAs is highly valued in shaping the future leadership identity of MAs. Our quantitative data show positive relationships between the professional identification, image and reputation, and leadership qualities of MAs. This suggests that the more one identifies with the profession, the more one is likely to report higher levels of leadership qualities that support members to internalise the desired meaning of their profession and to create a positive image and reputation. After the financial crisis of 2008–2009, the image of financial professions has been tarnished and unpredictable markets and unstable employment opportunities have challenged the profession across all sectors. Many respondents, especially CIMA members, suggested that the turmoil of the financial crisis did not impact negatively but rather elevated the pivotal role of MAs in contributing to cost efficiency and value creation.
Resumo:
Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.
Resumo:
This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
Diseñado para ayudar a los estudiantes a pasar desde el General Certificate of Secundary Education (GCSE) a un nivel superior de estudios Edexcel B Geografía nivel A2, este texto tiene por objeto proporcionar una gama completa de recursos. El manual está dividido en cuatro secciones:entornos fluviales; ambientes costeros; el medio rural; entornos urbanos. Cada uno está subdividido en capítulos, que se centran en los diferentes aspectos de dichas cuestiones en diferentes partes del mundo. Al final de cada sección un resumen ayuda a reunir los conceptos e ideas con el fin de revisar y reflexionar el aprendizaje. Hay referencias bibliográficas al final de cada sección, e índice al final del recurso.
Resumo:
Recurso diseñado para ayuda a los profesores que están preparando a los estudiantes para los exámenes Edexcel Geografía especificación B. Incluye el apoyo y orientación para la investigación futura, las hojas fotocopiables proporcionan a los estudiantes orientaciones prácticas sobre cómo redactar ensayos de investigación y el uso específico de habilidades y técnicas geográficas, ideas para usar eficazmente las TIC, preparación para el examen con preguntas del examen escrito, que dan la oportunidad de identificar las áreas en las que tienen menos conocimientos y poder revisarlos y las respuestas a las preguntas prácticas para los nuevos exámenes.
Resumo:
The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
Fish populations are increasingly being subjected to anthropogenic changes to their sensory environments. The impact of these changes on inter- and intra-specific communication, and its evolutionary consequences, has only recently started to receive research attention. A disruption of the sensory environment is likely to impact communication, especially with respect to reproductive interactions that help to maintain species boundaries. Aquatic ecosystems around the world are being threatened by a variety of environmental stressors, causing dramatic losses of biodiversity and bringing urgency to the need to understand how fish respond to rapid environmental changes. Here, we discuss current research on different communication systems (visual, chemical, acoustic, electric) and explore the state of our knowledge of how complex systems respond to environmental stressors using fish as a model. By far the bulk of our understanding comes from research on visual communication in the context of mate selection and competition for mates, while work on other communication systems is accumulating. In particular, it is increasingly acknowledged that environmental effects on one mode of communication may trigger compensation through other modalities. The strength and direction of selection on communication traits may vary if such compensation occurs. However, we find a dearth of studies that have taken a multimodal approach to investigating the evolutionary impact of environmental change on communication in fish. Future research should focus on the interaction between different modes of communication, especially under changing environmental conditions. Further, we see an urgent need for a better understanding of the evolutionary consequences of changes in communication systems on fish diversity.
Resumo:
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.