922 resultados para CHANGE POINT PROBLEMS
Resumo:
This paper studies the change-point problem for a general parametric, univariate or multivariate family of distributions. An information theoretic procedure is developed which is based on general divergence measures for testing the hypothesis of the existence of a change. For comparing the exact sizes of the new test-statistic using the criterion proposed in Dale (J R Stat Soc B 48–59, 1986), a simulation study is performed for the special case of exponentially distributed random variables. A complete study of powers of the test-statistics and their corresponding relative local efficiencies, is also considered.
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the study of tephrochrology. In this paper, DFA is applied to compositional datasets of two different types of tephras from Mountain Ruapehu in New Zealand and Mountain Rainier in USA. The canonical variables from the analysis are further investigated with a statistical methodology of change-point problems in order to gain a better understanding of the change in compositional pattern over time. Finally, a special case of segmented regression has been proposed to model both the time of change and the change in pattern. This model can be used to estimate the age for the unknown tephras using Bayesian statistical calibration
Resumo:
In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.
Resumo:
In this study, the Schwarz Information Criterion (SIC) is applied in order to detect change-points in the time series of surface water quality variables. The application of change-point analysis allowed detecting change-points in both the mean and the variance in series under study. Time variations in environmental data are complex and they can hinder the identification of the so-called change-points when traditional models are applied to this type of problems. The assumptions of normality and uncorrelation are not present in some time series, and so, a simulation study is carried out in order to evaluate the methodology’s performance when applied to non-normal data and/or with time correlation.
Resumo:
This work assessed homogeneity of the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) weather station climate series, using various statistical techniques. The record from this target station is one of the longest in Brazil, having commenced in 1933 with observations of precipitation, and temperatures and other variables later in 1936. Thus, it is one of the few stations in Brazil with enough data for long-term climate variability and climate change studies. There is, however, a possibility that its data may have been contaminated by some artifacts over time. Admittedly, there was an intervention on the observations in 1958, with the replacement of instruments, for which the size of impact has not been yet evaluated. The station transformed in the course of time from rural to urban, and this may also have influenced homogeneity of the observations and makes the station less representative for climate studies over larger spatial scales. Homogeneity of the target station was assessed applying both absolute, or single station tests, and tests relatively to regional climate, in annual scale, regarding daily precipitation, relative humidity, maximum (TMax), minimum (TMin), and wet bulb temperatures. Among these quantities, only precipitation does not exhibit any inhomogeneity. A clear signal of change of instruments in 1958 was detected in the TMax and relative humidity data, the latter certainly because of its strong dependence on temperature. This signal is not very clear in TMin, but it presents non-climatic discontinuities around 1953 and around 1970. A significant homogeneity break is found around 1990 for TMax and wet bulb temperature. The discontinuities detected after 1958 may have been caused by urbanization, as the observed warming trend in the station is considerably greater than that corresponding to regional climate.
Resumo:
In many applications of lifetime data analysis, it is important to perform inferences about the change-point of the hazard function. The change-point could be a maximum for unimodal hazard functions or a minimum for bathtub forms of hazard functions and is usually of great interest in medical or industrial applications. For lifetime distributions where this change-point of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can also be obtained. Considering the exponentiated Weibull distribution for the lifetime data, we have different forms for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms. This model gives great flexibility of fit, but we do not have analytic expressions for the change-point of the hazard function. In this way, we consider the use of Markov Chain Monte Carlo methods to get posterior summaries for the change-point of the hazard function considering the exponentiated Weibull distribution.
Resumo:
AMS subject classification: 65K10, 49M07, 90C25, 90C48.
Resumo:
2000 Mathematics Subject Classification: 62N02
Resumo:
Peer reviewed
Resumo:
In recent papers, Wied and his coauthors have introduced change-point procedures to detect and estimate structural breaks in the correlation between time series. To prove the asymptotic distribution of the test statistic and stopping time as well as the change-point estimation rate, they use an extended functional Delta method and assume nearly constant expectations and variances of the time series. In this thesis, we allow asymptotically infinitely many structural breaks in the means and variances of the time series. For this setting, we present test statistics and stopping times which are used to determine whether or not the correlation between two time series is and stays constant, respectively. Additionally, we consider estimates for change-points in the correlations. The employed nonparametric statistics depend on the means and variances. These (nuisance) parameters are replaced by estimates in the course of this thesis. We avoid assuming a fixed form of these estimates but rather we use "blackbox" estimates, i.e. we derive results under assumptions that these estimates fulfill. These results are supplement with examples. This thesis is organized in seven sections. In Section 1, we motivate the issue and present the mathematical model. In Section 2, we consider a posteriori and sequential testing procedures, and investigate convergence rates for change-point estimation, always assuming that the means and the variances of the time series are known. In the following sections, the assumptions of known means and variances are relaxed. In Section 3, we present the assumptions for the mean and variance estimates that we will use for the mean in Section 4, for the variance in Section 5, and for both parameters in Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors of some testing procedures and estimates.
Resumo:
The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.
Resumo:
Managing financial institutions in an underdeveloped economic context has become a real challenge nowadays. In order to reach the organization`s planned goals, they have to deal with structural, behavioral and informational problems. From the systemic point of view, this situation gets even worse when the company does not present organizational boundaries and a cohesive identification for their stakeholders. Thus, European countries have some special financial lines in order to help the development of micro credit in Latin communities in an attempt to help the local economy. However, institutions like Caixa dos Andes in Peru present management problems when dealing with this complexity. Based on this, how can the systemic eye help in the diagnosis of soft problems of a Peruvian financial company? This study aims to diagnose soft problems of a Peruvian financial company based on soft variables like identity, communication and autonomy and also intends to identify possible ways to redesign its basic framework. The (VSM--Viable System Model) method from Beer (1967), applied in this diagnostic study, was used in a practical way as a management tool for organizations` analysis and planning. By describing the VSM`s five systems, the creation of a systemic vision or a total vision is possible, showing the organization`s complexity from the inside. Some company`s soft problems like double control, inefficient use of physical and human resources, low information flows, slowness, etc. The VSM presented an organizational diagnosis indicating effective solutions that do integrate its five systems.
Resumo:
In the present paper, we establish two fixed point theorems for upper semicontinuous multivalued mappings in hyperconvex metric spaces and apply these to study coincidence point problems and minimax problems. (C) 2002 Elsevier Science (USA). All rights reserved.