995 resultados para CH4 emission


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no ‘one size fits all’ method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study presents the first results from Brazil using SF6 tracer technique adapted from cattle to evaluate the capability of condensed tannin (CT) present in three tropical legume forages, Leucaena leucocephala (LEU), Styzolobium aterrimum (STA), and Mimosa caesalpiniaefolia Benth (MIM) to reduce enteric CH4 production in Santa Ins sheep. Twelve male lambs [27.88 +/- 2.85 kg body weight (BW)] were allocated in individual metabolic cages for 20-day adaptation followed by 6 days for measuring dry matter intake (DMI) and CH4 emission. All lambs received water, mineral supplement, and Cynodon dactylon v. coast-cross hay ad libitum. The treatments consisted of soybean meal (710 g/kg) and ground corn (290 g/kg) [control (CON)]; soybean meal (150 g/kg), ground corn (30 g/kg), and Leucaena hay (820 g/kg) (LEU); soybean meal (160 g/kg), ground corn (150 g/kg), and Mucuna hay (690 g/kg) (STA); and soybean meal (280 g/kg), ground corn (190 g/kg), and Mimosa hay (530 g/kg) (MIM); all calculated to provide 40 g/kg CT (except for CON). DMI (in grams of DMI per kilogram BW per day) was lower for LEU (22.0) than CON (29.3), STA (31.2), and MIM (31.6). The LEU group showed emission of 7.8 g CH4/day, significantly lower than CON (10.5 g CH4/day), STA (10.4 g CH4/day), and MIM (11.3 g CH4/day). However, when the CH4 emission per DMI was considered, there were no significant differences among treatments (0.37, 0.36, 0.33, and 0.35 g CH4/g DMI/kg BW/day, respectively, for CON, LEU, STA, and MIM). The sheep receiving STA had shown a tendency (p = 0.15) to reduce methane emission when compared to the CON group. Therefore, it is suggested that tropical tanniniferous legumes may have potential to reduce CH4 emission in sheep, but more research is warranted to confirm these results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of HCl on CO and NO emissions was experimentally investigated in an entrained flow reactor (EFR) and an internally circulating fluidized bed (ICFB). The results in EFR show the addition of HCl inhibits CO oxidation and NO formation at 1073 K and 1123 K. At the lower temperature (1073 K) the inhibition of HCl becomes more obvious. In ICFB, chlorine-containing plastic (PVC) was added to increase the concentration of HCl during the combustion of coal or coke. Results show that HCl is likely to enhance the reduction of NO and N2O. HCl greatly increases CO and CH4 emission in the flue gas. A detailed mechanism of CO/NO/HCl/SO2 system was used to model the effect of HCl in combustion. The results indicate that HCl not only promotes the recombination of radicals O, H, and OH, but also accelerates the chemical equilibration of radicals. The influence of HCl on the radicals mainly occurs at 800-1200 K. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本工作研究植物源CH4排放,即植物本身生成的CH4,不是厌氧微生物代谢产生的。目前对植物是否直接排放甲烷仍然存在很大争议:一方面实验中观测到的植物甲烷排放率差异较大;另一方面对植物甲烷排放内在机理仍不清楚。本文以旱生植物冷蒿(Artemisia frigida)为对象,测定冷蒿甲烷排放,分析冷蒿甲烷排放的可能存在的外界干扰因素。实验结果表明,冷蒿确实能够排放甲烷,冷蒿甲烷生成可能与活性氧代谢有关。 冷蒿是一种典型的旱生植物,其生长的典型草原中,土壤透气性好并表现为大气甲烷的汇。土壤孔隙间的甲烷浓度不高于大气甲烷浓度,能够通过植物根系进入植物体内的土壤甲烷量十分有限,植物组织又缺乏吸附甲烷的能力,很难在植物体内累积甲烷。因此,一些实验研究中所提出的植物蒸腾作用和细胞壁吸附作用对冷蒿的甲烷排放并没有显著影响。我们研究在实验室条件下冷蒿能否排放甲烷,无论是野外生长的冷蒿,还是室内无菌培养的冷蒿,都有明显的甲烷排放。通过研究植物呼吸作用与甲烷排放之间的相关性,我们发现两者有明显的线性关系。植物在应对环境胁迫时,呼吸电子传递链发生紊乱,导致活性氧的积累,这可能是植物所排放甲烷的主要来源。进而,我们通过活性氧添加实验证实包括超氧阴离子(•O2-),羟基自由基(•OH)和过氧化氢(H2O2)在内的多种活性氧都能够促进冷蒿的甲烷排放,而抗氧化酶CAT则对冷蒿的甲烷排放具有抑制效果,我们认为这种抑制效果是通过对ROS的清除来实现的。冷蒿体内能够不断产生甲烷的途径可能需要活性氧的参与,植物体内自由基水平的高低,很可能决定了这种植物能否排放甲烷。因此,我们对比了四种植物体内的抗氧化酶活性。我们在抗氧化酶活性高的物种中没有测得甲烷的排放,而冷蒿和小叶锦鸡儿两种有明显甲烷排放的植物,其三种抗氧化酶活性均较低。由此我们认为,植物体内的活性氧与植物细胞内的某些成分发生反应并产生甲烷的过程很可能是植物体内清除活性氧,降低过氧化毒害的一种适应机制。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Up to now, there have been few studies in the annual fluxes of greenhouse gases in lakes of subtropical regions. The fluxes of methane (CH4) and carbon dioxide (CO2) across air-water interface were measured in a shallow, hypereutrophic, subtropical Lake Donghu (China) over a year cycle, using a static chamber technique. During the year, Lake Donghu emitted CH4 and CO2; the average flux of CH4 and CO2 was 23.3 +/- 18.6 and 332.3 +/- 160.1 mg m(-2) d(-1), respectively. The fluxes of CH4 and CO2 showed strong seasonal dynamics: CH4 emission rate was highest in summer, remaining low in other seasons, whereas CO2 was adsorbed from the atmosphere in spring and summer, but exhibited a large emission in winter. Annual carbon (C) budget across air-water interface in Lake Donghu was estimated to be 7.52 +/- 4.07 x 10(8) g. CH4 emission was correlated positively with net primary production (NPP) and temperature, whereas CO2 flux correlated negatively with NPP and temperature; however, there were no significant relationships between the fluxes of CH4 and CO2 and dissolved organic carbon, a significant difference from boreal lakes, indicating that phytoplankton rather than allochthonous matter regulated C dynamics across air-water interface of subtropical lake enriched nutrient content. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The summer diel variation of methane (CH4) flux was investigated in a eutrophic, subtropical lake in China. The CH4 concentration was always supersaturated, and the emission rate ranged from 0.24 to 45.51 mg m(-2) h(-1). The diel variations of CH4 flux in June and August showed a single peak in early afternoon and a minimum in the morning, while the pattern varied irregularly in May. There was a moderate relationship between water and sediment temperature and CH4 emission rate in some months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.