972 resultados para CFU, colony-forming unit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To formally test the hypothesis that the granulocyte/macrophage colony-forming unit (GM-CFU) cells can contribute to early hematopoietic reconstitution immediately after transplant, the frequency of genetically modified GM-CFU after retroviral vector transduction was measured by a quantitative in situ polymerase chain reaction (PCR), which is specific for the multidrug resistance-1 (MDR-1) vector, and by a quantitative GM-CFU methylcellulose plating assay. The results of this analysis showed no difference between the transduction frequency in the products of two different transduction protocols: “suspension transduction” and “stromal growth factor transduction.” However, when an analysis of the frequency of cells positive for the retroviral MDR-1 vector posttransplantation was carried out, 0 of 10 patients transplanted with cells transduced by the suspension method were positive for the vector MDR-1 posttransplant, whereas 5 of 8 patients transplanted with the cells transduced by the stromal growth factor method were positive for the MDR-1 vector transcription unit by in situ or in solution PCR assay (a difference that is significant at the P = 0.0065 level by the Fisher exact test). These data suggest that only very small subsets of the GM-CFU fraction of myeloid cells, if any, contribute to the repopulation of the hematopoietic tissues that occurs following intensive systemic therapy and transplantation of autologous hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manual counting of bacterial colony forming units (CFUs) on agar plates is laborious and error-prone. We therefore implemented a colony counting system with a novel segmentation algorithm to discriminate bacterial colonies from blood and other agar plates.A colony counter hardware was designed and a novel segmentation algorithm was written in MATLAB. In brief, pre-processing with Top-Hat-filtering to obtain a uniform background was followed by the segmentation step, during which the colony images were extracted from the blood agar and individual colonies were separated. A Bayes classifier was then applied to count the final number of bacterial colonies as some of the colonies could still be concatenated to form larger groups. To assess accuracy and performance of the colony counter, we tested automated colony counting of different agar plates with known CFU numbers of S. pneumoniae, P. aeruginosa and M. catarrhalis and showed excellent performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data contain source data for Figure 5c from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Retrovirally transduced CFU-E cells were incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of the hormone erythropoietin and its receptor (EpoR) is though to be required for normal hematopoiesis. To define the role of EpoR in this process, the murine EpoR was disrupted by homologous recombination. Mice lacking the EpoR died in utero at embryonic day 11-12.5 with severe anemia. Embryonic erythropoiesis was markedly diminished, while fetal liver hematopoiesis was blocked at the proerythroblast stage. Other cell types known to express EpoR, including megakaryocytes, mast, and neural cells were morphologically normal. Reverse transcription-coupled PCR analysis of RNA from embryonic yolk sac, peripheral blood, and fetal liver demonstrated near normal transcripts levels for EKLF, thrombopoietin (Tpo), c-MPL, GATA-1, GATA-2, and alpha- and embryonic beta H1-globin but non for adult beta maj-globin. While colony-forming unit-erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) colonies were not present in cultures derived from EpoR-/- liver or yolk sac cells, hemoglobin-containing BFU-E colonies were detected in cultures treated with recombinant Tpo and Kit ligand or with Tpo and interleukin 3 and 11. Rescued BFU-E colonies expressed adult beta-globin and c-MPL and appeared morphologically normal. Thus, erythroid progenitors are formed in vivo in mice lacking the EpoR, and our studies demonstrate that a signal transmitted through the Tpo receptor c-MPL stimulates proliferation and terminal differentiation of these progenitors in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cord blood is a well-established alternative to bone marrow and peripheral blood stem cell transplantation. To this day, over 400 000 unrelated donor cord blood units have been stored in cord blood banks worldwide. To enable successful cord blood transplantation, recent efforts have been focused on finding ways to increase the hematopoietic progenitor cell content of cord blood units. In this study, factors that may improve the selection and quality of cord blood collections for banking were identified. In 167 consecutive cord blood units collected from healthy full-term neonates and processed at a national cord blood bank, mean platelet volume (MPV) correlated with the numbers of cord blood unit hematopoietic progenitors (CD34+ cells and colony-forming units); this is a novel finding. Mean platelet volume can be thought to represent general hematopoietic activity, as newly formed platelets have been reported to be large. Stress during delivery is hypothesized to lead to the mobilization of hematopoietic progenitor cells through cytokine stimulation. Accordingly, low-normal umbilical arterial pH, thought to be associated with perinatal stress, correlated with high cord blood unit CD34+ cell and colony-forming unit numbers. The associations were closer in vaginal deliveries than in Cesarean sections. Vaginal delivery entails specific physiological changes, which may also affect the hematopoietic system. Thus, different factors may predict cord blood hematopoietic progenitor cell numbers in the two modes of delivery. Theoretical models were created to enable the use of platelet characteristics (mean platelet volume) and perinatal factors (umbilical arterial pH and placental weight) in the selection of cord blood collections with high hematopoietic progenitor cell counts. These observations could thus be implemented as a part of the evaluation of cord blood collections for banking. The quality of cord blood units has been the focus of several recent studies. However, hemostasis activation during cord blood collection is scarcely evaluated in cord blood banks. In this study, hemostasis activation was assessed with prothrombin activation fragment 1+2 (F1+2), a direct indicator of thrombin generation, and platelet factor 4 (PF4), indicating platelet activation. Altogether three sample series were collected during the set-up of the cord blood bank as well as after changes in personnel and collection equipment. The activation decreased from the first to the subsequent series, which were collected with the bank fully in operation and following international standards, and was at a level similar to that previously reported for healthy neonates. As hemostasis activation may have unwanted effects on cord blood cell contents, it should be minimized. The assessment of hemostasis activation could be implemented as a part of process control in cord blood banks. Culture assays provide information about the hematopoietic potential of the cord blood unit. In processed cord blood units prior to freezing, megakaryocytic colony growth was evaluated in semisolid cultures with a novel scoring system. Three investigators analyzed the colony assays, and the scores were highly concordant. With such scoring systems, the growth potential of various cord blood cell lineages can be assessed. In addition, erythroid cells were observed in liquid cultures of cryostored and thawed, unseparated cord blood units without exogenous erythropoietin. This was hypothesized to be due to the erythropoietic effect of thrombopoietin, endogenous erythropoietin production, and diverse cell-cell interactions in the culture. This observation underscores the complex interactions of cytokines and supporting cells in the heterogeneous cell population of the thawed cord blood unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The use of glucocorticoids (GCs) in the treatment of RA is a frequent cause of bone loss. In vitro, however, this same class of steroids has been shown to promote the recruitment and/or maturation of primitive osteogenic precursors present in the colony forming unit-fibroblastic (CFU-F) fraction of human bone and marrow. In an effort to reconcile these conflicting observations, we investigated the effects of the synthetic GC dexamethasone (Dx) on parameters of growth and osteogenic differentiation in cultures of bone marrow stromal cells derived from a large cohort of adult human donors (n=30). Methods. Marrow suspensions were cultured in the absence and presence of Dx at concentrations between 10 pm and 1 µm. After 28 days we determined the number and diameter of colonies formed, the total number of cells, the surface expression of receptors for selected growth factors and extracellular matrix proteins and, based on the expression of the developmental markers alkaline phosphatase (AP) and the antigen recognized by the STRO-1 monoclonal antibody, the proportion of cells undergoing osteogenic differentiation and their extent of maturation. Results. At a physiologically equivalent concentration, Dx had no effect on the adhesion of CFU-F or on their subsequent proliferation, but did promote their osteogenic differentiation and further maturation. These effects were independent of changes in the expression of the receptors for fibroblast growth factors, insulin-like growth factor 1, nerve growth factor, platelet-derived growth factors and parathyroid hormone/parathyroid hormone-related protein, but were associated with changes in the number of cells expressing the 2 and 4, but not ß1, integrin subunits. At supraphysiological concentrations, the effects of Dx on the osteogenic recruitment and maturation of CFU-F and their progeny were maintained but at the expense of a decrease in cell number. Conclusions. A decrease in the proliferation of osteogenic precursors, but not in their differentiation or maturation, is likely to be a key factor in the genesis of GC-induced bone loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Umbilical cord blood-derived endothelial colony-forming cells (UCB-ECFC) show utility in neovascularization, but their contribution to osteogenesis has not been defined. Cocultures of UCB-ECFC with human fetal-mesenchymal stem cells (hfMSC) resulted in earlier induction of alkaline phosphatase (ALP) (Day 7 vs. 10) and increased mineralization (1.9×; p <.001) compared to hfMSC monocultures. This effect was mediated through soluble factors in ECFC-conditioned media, leading to 1.8-2.2× higher ALP levels and a 1.4-1.5× increase in calcium deposition (p <.01) in a dose-dependent manner. Transcriptomic and protein array studies demonstrated high basal levels of osteogenic (BMPs and TGF-ßs) and angiogenic (VEGF and angiopoietins) regulators. Comparison of defined UCB and adult peripheral blood ECFC showed higher osteogenic and angiogenic gene expression in UCB-ECFC. Subcutaneous implantation of UCB-ECFC with hfMSC in immunodeficient mice resulted in the formation of chimeric human vessels, with a 2.2-fold increase in host neovascularization compared to hfMSC-only implants (p = .001). We conclude that this study shows that UCB-ECFC have potential in therapeutic angiogenesis and osteogenic applications in conjunction with MSC. We speculate that UCB-ECFC play an important role in skeletal and vascular development during perinatal development but less so in later life when expression of key osteogenesis and angiogenesis genes in ECFC is lower.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony–forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel–forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >108 ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.