865 resultados para CFRP strengthening


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Applying a certain prestress level to the carbon fiber reinforced polymer (CFRP) reinforcement according to either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques can mobilize the strengthening potentialities of this high tensile strength composite material. For the prediction of the flexural behavior of reinforced concrete (RC) structures strengthened with prestressed EBR or NSM CFRPs, however, simplified analytical and design formulations still need to be developed as a guidance for engineers to design this type of strengthened structures by hand calculation without any programming help. Hence, the current work aims to briefly explain a developed simplified analytical approach, with a design framework, to predict the flexural behavior of RC beams flexurally strengthened with either prestressed EBR or NSM CFRP reinforcements. Moreover, an upper limit for the prestress level is proposed in order to optimize the ductility performance of the NSM prestressing technique. The good predictive performance of the analytical approaches was appraised by simulating the results of experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ao longo dos anos as estruturas existentes têm sido adaptadas para novas utilizações. No entanto, devido aos condicionalismos arquitetónicos e patrimoniais, a demolição e substituição por estruturas novas, pode-se tornar pouco viável, sendo cada vez mais exequível a opção de reforçar. A presente dissertação refere-se a uma dessas opções de reforço nomeadamente ao reforço de estruturas em betão armado com CFRP (Compósitos Reforçados com Fibras de Carbono), nomeadamente lajes e vigas. Os objetivos principais deste trabalho consistem em desenvolver uma proposta de critérios de dimensionamento de estruturas de betão armado reforçadas com CFRP tendo por base o disposto no Eurocódigo 2 comparando -a com o relatório técnico publicado “bulletin 14 - Externally bonded FRP reinforcement for RC structures”, da Fédération Internationale du Béton. Recorrendo à revisão bibliográfica, onde estão referidos temas como as características dos materiais de um sistema FRP, as suas técnicas de reforço e com uma exposição do comportamento das vigas reforçadas à flexão, particularmente no seu comportamento mecânico e modos de ruína associados a este tipo de reforço. Apresentam-se duas metodologias de cálculo para dimensionamento deste tipo de reforço para os diferentes estados limites, e aplicam-se a cada uma das metodologias de cálculo a uma viga com necessidade de reforço à flexão e ao corte, devido a um aumento de esforços provocado pelo aumento da sobrecarga. Desenvolve-se um estudo experimental onde se pretende avaliar a eficácia de um sistema de reforço à flexão com compósitos de CFRP colado externamente a uma viga e com diferentes taxas de reforço.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil