981 resultados para CEREBRAL MALARIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis. Methodology/Principal Findings: C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O(2), 3.0 ATA, 1-2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-alpha, IFN-gamma and IL-10 mRNA levels and percentage of gamma delta and alpha beta CD4(+) and CD8(+) T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB)dysfunction and hypothermia. Conclusions/Significance: The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented the Ph.D degree in Biology

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral complications are important, but poorly understood pathological features of infections caused by some species of Plasmodium and Babesia. Patients dying from P. falciparum were classified as cerebral or non-cerebral cases according to the cerebral malaria coma scale. Light microscopy revealed that cerebral microvessels of cerebral malaria patients were field with a mixture of parazited and unparazited erythrocytes, with 94% of the vessels showing parasitized red blood cell (PRBC) sequestration. Some degree of PRBC sequestration was also found in non-cerebral malaria patients, but the percentage of microvessls with sequestered PRBC was only 13% Electron microscopy demonstrated knobs on the membrane of PRBC that formed focal junctions with the capillary endothelium. A number of host cell molecules such as CD36, thrombospondim (TSP) and intracellular adhesion molecule I (ICAM-1) may function as endothelial cell surfacereports for P. falciparum-infected erythrocytes. Affinity labeling of CD36 and TSP to the PRBC surface showed these molecules specifically bind to the knobs. Babesia bovis infected erythrocytes procedure projections of the erythrocyte membrane that are similar to knobs. When brain tissue from B. bovis-infected cattle was examined, cerebral capillaries were packed with PRBC. Infected erythrocytes formed focal attachments with cerebral endothelial cells at the site of these knob-like projections. These findings indicate that cerebral pathology caused by B. bovis is similar to human cerebral malaria. A search for cytoadherence proteins in the endothelial cells may lead to a better understanding of the pathogenisis of cerebral babesiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several animal models for human cerebral malaria have been proposed in the past, name have shown pathological findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied the pathology of brains of Plasmodium coatneyi (primate malaria parasite)-infected rhesus monkeys. Our study demonstrated parazitized erythrocyte (PRBC) sequestration and cytoadherence of knobs on PRBC to endothelial cells in cerebral microvessels of these monkeys. This similar to the findings een in human cerebral malaria. Crebral microvessels with sequestred PRBC were shown by immunohistochemistry to possess CD36, TSP and ICAM-1. These proteins were not evident in cerebral microvessels of uninfected control monkeys. Our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral malaria (CM) is a life-threatening complication of Plasmodium falciparum malaria that continues to be a major global health problem. Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can be a target for the development of adjuvant therapies for the disease. Vascular occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine experimental model of CM by Plasmodium berghei ANKA to identify mechanisms of disease and to screen potential therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. Methods: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. Results: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from ECM. Nevertheless, infection with parasites of the ANKA Delta pm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. Conclusions: Infection of pregnant C57BL/6 females with K173, NK65 and ANKA Delta pm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical investigation of malaria is hampered by the lack of a method for estimating the number of parasites that are sequestered in the tissues, for it is these parasites that are thought to be crucial to the pathogenesis of life-threatening complications such as cerebral malaria. We present a method of estimating this hidden population by using clinical observations of peripheral parasitemia combined with an age-structured mathematical model of the parasite erythrocyte cycle. Applying the model to data from 217 Gambian children undergoing treatment for cerebral malaria we conclude that although artemether clears parasitemia more rapidly than quinine, the clearance of sequestered parasites is similar for the two drugs. The estimated sequestered mass was found to be a more direct predictor of fatal outcome than clinically observed parasitemia. This method allows a sequential analysis of sequestered parasite population dynamics in children suffering from cerebral malaria, and the results offer a possible explanation for why artemether provides less advantage than might have been expected over quinine in reducing mortality despite its rapid effect on circulating parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of infected erythrocytes to brain venules is a central pathogenic event in the lethal malaria disease complication, cerebral malaria. The only parasite adhesion trait linked to cerebral sequestration is binding to intercellular adhesion molecule-1 (ICAM-1). In this report, we show that Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds ICAM-1. We have cloned and expressed PfEMP1 recombinant proteins from the A4tres parasite. Using heterologous expression in mammalian cells, the minimal ICAM-1 binding domain was a complex domain consisting of the second Duffy binding-like (DBL) domain and the C2 domain. Constructs that contained either domain alone did not bind ICAM-1. Based on phylogenetic criteria, there are five distinct PfEMP1 DBL types designated α, β, γ, δ, and ɛ. The DBL domain from the A4tres that binds ICAM-1 is DBLβ type. A PfEMP1 cloned from a distinct ICAM-1 binding variant, the A4 parasite, contains a DBLβ domain and a C2 domain in tandem arrangement similar to the A4tres PfEMP1. Anti-PfEMP1 antisera implicate the DBLβ domain from A4var PfEMP1 in ICAM-1 adhesion. The identification of a P. falciparum ICAM-1 binding domain may clarify mechanisms responsible for the pathogenesis of cerebral malaria and lead to interventions or vaccines that reduce malarial disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different features of sensorimotor function and behaviour were studied in murine cerebral malaria (CM) and malaria without cerebral involvement (non-CM) applying the primary screen of the SHIRPA protocol. Histopathological analysis of distinct brain regions was performed and the relative size of haemorrhages and plugging of blood cells to brain vasculature was analysed. Animals suffering from CM develop a wide range of behavioural and functional alterations in the progressive course of the disease with a statistically significant impairment in all functional categories assessed 36 h prior to death when compared with control animals. Early functional indicators of cerebral phenotype are impairments in reflex and sensory system and in neuropsychiatric state. Deterioration in function is paralleled by the degree of histopathological changes with a statistically significant correlation between the SHIRPA score of CM animals and the mean size of brain haemorrhage. Furthermore, image analysis yielded that the relative area of the brain lesions was significantly larger in the forebrain and brainstem compared with the other regions of interest. Our results indicate that assessment of sensory and motor tasks by the SHIRPA primary screen is appropriate for the early in vivo discrimination of cerebral involvement in experimental murine malaria. Our findings also suggest a correlation between the degree of functional impairment and the size of the brain lesions as indicated by parenchymal haemorrhage. Applying the SHIRPA protocol in the functional characterization of animals suffering from CM might prove useful in the preclinical assessment of new antimalarial and potential neuroprotective therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Defense against malaria depends upon amplification of the spleen structure and function for the clearance of parasitized red blood cells (pRBC). We studied the distribution and amount of CD(34+) cells in the spleens of mice infected with rodent malaria. We sought to identify these cells in the spleen and determine their relationship to infection. C57BL/6J mice were infected with self-resolving, Plasmodium chabaudi CR, or one of the lethal rodent malaria strains, P. chabaudi AJ and P. berghei ANKA. We then recorded parasitemia, mortality, and the presence of CD(34+) cells in spleen, as determined by immunohistochemistry and flow cytometry. In the non-lethal strain, the spleen structure was maintained during amplification, but disrupted in lethal models. The abundance of CD(34+) cells increased in the red pulp on the 4th and 6th days p.i. in all models, and subsided on the 8th day p.i. Faint CD(34+) staining on the 8th day p.i., was probably due to differentiation of committed cell lineages. In this work, increase of spleen CD(34+) cells did not correlate with infection control. (c) 2009 Published by Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of a malaria vaccine seems to be a definite possibility despite the fact that even individuals with a life time of endemic exposure do not develop sterile immunity. An effective malaria vaccine would be invaluable in preventing malaria-associated deaths in endemic areas, especially amongst children less than 5 years of age and pregnant women. This review discusses our current understanding of immunity against the asexual blood stage of malaria - the stage that is responsible for the symptoms of the disease - and approaches to the design of an asexual blood stage vaccine.