1000 resultados para CERAMICS PROCESSING


Relevância:

70.00% 70.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative study of two customary routes of ceramics processing applied to the synthesis of SnO2-based varistors is reported in this paper. Devices of equivalent composition were prepared through the Pechini method and through directly mixing the oxides without the addition of anti-agglomerants or binders. The microstructures of the sintered samples were characterised with X-ray diffraction and scanning and transmission electron microscopies. The electrical behaviour of the devices was studied on the basis of the current density versus electric field (J-E) characteristics and impedance spectroscopy measurements. The Pechini method ensures the homogeneity in the distribution of the additives in the tin oxide matrix but the formation of secondary phases seems to be independent of the synthesis route. Devices with similar non-linear coefficients of 18 and 21 were obtained through the mixed oxides route and the Pechini method, respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cobalt ferrite is a ferrimagnetic magnetostrictive ceramic that has potential application in magnetoelastic and magnetoelectric transducers. In this work, CoFe2O4 was obtained using a conventional ceramic method and Bi2O3 was used as additive in order to obtain liquid-phase sintered samples. Bi2O3 was added to the ferrite in amounts ranging from 0.25 mol% to 0.45 mol% and samples were sintered at 900 degrees C and 950 degrees C. It was observed the presence of Bi-containing particles in the microstructure of the sintered samples and the magnetostriction results indicated microstructural anisotropy. It was verified that it is possible to get dense cobalt ferrites, liquid-phase sintered, with relative densities higher than 90% and with magnetostriction values very close to samples sintered without additives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Intelligent Decision Support System (IDSS), also called an expert system, is explained. It was then applied to choose the right composition and firing temperature of a ZnO based varistor. 17 refs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our efforts were directed to the preparation of bismuth titanate-Bi4Ti3O12 (BIT) by two procedures: mechanically assisted synthesis and polymeric precursor method to display a variety of their advantages. To follow the nucleation and phase formation of BIT, XRD and Rietveld refinement analysis were used and it was shown that Bi4Ti3O12 ceramic can been successfully prepared from nano-sized powders obtained by both methods. The ferroelectric properties were determined and the loops from BIT obtained by polymeric precursor method were not fully saturated with a remnant polarization of 20 mu C/cm(2) and coercitive field of 1500 kV/cm. BIT obtained from powders prepared by mechanically assisted synthesis shows a remnant polarization of 0.65 mu C/cm(2) and coercitive field of 1050 kV/cm. The grain morphology may be the factor causing the observed differences. (C) 2005 Published by Elsevier Ltd and Techna Group S.r.l.