952 resultados para CERAMIC THICKNESS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the fracture resistance of ceramic plates cemented to dentin as a function of the resin cement film thickness. Materials and Methods: Ceramic plates (1 and 2 mm thicknesses) were cemented to bovine dentin using resin composite cement. The film thicknesses used were approximately 100, 200, and 300 μm. Noncemented ceramic plates were used as control. Fracture loads (N) were obtained by compressing a steel indenter in the center of the ceramic plates. ANOVA and Tukey tests (α = 0.05) were used for each ceramic thickness to compare fracture loads among resin cement films used. Results: Mean fracture load (N) for 1-mm ceramic plates were: control - 26 (7); 100 μm - 743 (150); 200 μm - 865 (105); 300 μm - 982 (226). Test groups were significantly different from the control group; there was a statistical difference in fracture load between groups with 100 and 300 μm film thicknesses (p < 0.01). Mean fracture load for 2-mm ceramic plates were: control - 214 (111); 100 μm - 1096 (341); 200 μm - 1067 (226); 300 μm - 1351 (269). Tested groups were also significantly different from the control group (p < 0.01). No statistical difference was shown among different film thicknesses. Conclusions: Unluted specimens presented significantly lower fracture resistance than luted specimens. Higher cement film thickness resulted in increased fracture resistance for the 1-mm ceramic plates. Film thickness did not influence the fracture resistance of 2-mm porcelain plates. Copyright © 2007 by The American College of Prosthodontists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate the microtensile bond strength (MTBS) of ceramic cemented to dentin varying the resin cement and ceramic shades.Materials and Methods: Two VITA VM7 ceramic shades (Base Dentine 0M1 and Base Dentine 5M3) were used. A spectrophotometer was used to determine the percentage translucency of ceramic (thickness: 2.5 mm). For the MTBS test, 80 molar dentin surfaces were etched and an adhesive was applied. Forty blocks (7.2 x 7.2 x 2.5 mm) of each ceramic shade were produced and the ceramic surface was etched (10% hydrofluoric acid) for 60 s, followed by the application of silane and resin cement (A3 yellow and transparent). The blocks were cemented to dentin using either A3 or transparent cement. Specimens were photoactivated for 20 s or 40 s, stored in distilled water (37 degrees C/24 h), and sectioned. Eight experimental groups were obtained (n = 10). Specimens were tested for MTSB using a universal testing machine. Data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha <= 0.05).Results: The percentage translucency of 0M1 and 5M3 ceramics were 10.06 (+/- 0.25)% and 1.34 (+/- 0.02)%, respectively. The lowest MTBS was observed for the ceramic shade 5M3. For the 0M1 ceramic, the A3 yellow cement that was photocured for 20 s exhibited the lowest MTBS, while the transparent cement that was photocured for 40 s presented the highest MTBS.Conclusions: For the 2.5-mm-thick 5M3 ceramic restorations, the MTBS of ceramic cemented to dentin significantly increased. The dual-curing cement Variolink II photocured for 40 s is not recommended for cementing the Base Dentine 5M3 feldspathic ceramic to dentin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of different curing lights and chemical catalysts on the degree of conversion of resin luting cements. A total of 60 disk-shaped specimens of RelyX ARC or Panavia F of diameter 5 mm and thickness 0.5 mm were prepared and the respective chemical catalyst (Scotchbond Multi-Purpose Plus or ED Primer) was added. The specimens were light-cured using different curing units (an argon ion laser, an LED or a quartz-tungsten-halogen light) through shade A2 composite disks of diameter 10 mm and thickness 2 mm. After 24 h of dry storage at 37A degrees C, the degree of conversion of the resin luting cements was measured by Fourier-transformed infrared spectroscopy. For statistical analysis, ANOVA and the Tukey test were used, with p a parts per thousand currency signaEuro parts per thousand 0.05. Panavia F when used without catalyst and cured using the LED or the argon ion laser showed degree of conversion values significantly lower than RelyX ARC, with and without catalyst, and cured with any of the light sources. Therefore, the degree of conversion of Panavia F with ED Primer cured with the quartz-tungsten-halogen light was significantly different from that of RelyX ARC regardless of the use of the chemical catalyst and light curing source. In conclusion, RelyX ARC can be cured satisfactorily with the argon ion laser, LED or quartz-tungsten-halogen light with or without a chemical catalyst. To obtain a satisfactory degree of conversion, Panavia F luting cement should be used with ED Primer and cured with halogen light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poster presented at the 24th Annual Meeting of the Portuguese Dental Association, Lisbon, 12-14 November 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of A] layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. 'Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3/Al interface is minimal when Al2O3 layer and Al layer have the same thickness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the effect of thermocycling (TC) on the microtensile bond strength (microTBS) of two luting agents to feldspathic ceramic and to measure their film thickness (FT). For the microTBS test, sixteen blocks (6.4 x 6.4 x 4.8 mm) were fabricated using a feldspathic ceramic, etched with 10% hydrofluoric acid, rinsed and treated with the silane agent. The ceramic blocks were divided into two groups (n= 8): Gr1: dual-cured resin cement and Gr2: flowable resin. The luting agents were applied on the treated surfaces. Microsticks (1 +/-0. 1mm2) were prepared and stored under two conditions: dry, specimens immediately submitted to the microTBS test, and TC (6,000 cycles; 5 degrees C-55 degrees C). The microTBS was evaluated using a universal testing machine (1 mm/min). The microTBS data (MPa) were submitted to two-way ANOVA and Tukey' test (5%). For the FT test (ISO 4049), 0.05 ml of each luting agent (n=8) was pressed between two Mylar-covered glass plates (150 N) for 180 seconds and light polymerized. FT was measured using a digital paquimeter (Model 727-2001). The data (mm) were submitted to one-way ANOVA. The luting cement did not influence the microTBS results (p= 0.4467). Higher microtensile bond values were found after TC (20.5 +/- 8.6 MPa) compared to the dry condition (13.9 +/- 4. 7MPa), for both luting agents. The luting agents presented similar film thicknesses: Gr1- 0.052 +/- 0.016 mm; Gr2-0.041 +/- 0.003 mm. The luting agents presented similar film thickness and microTBS values, in dry and TC conditions and TC increased the bond strength regardless of the luting agent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate ordered array formation of Au nanoparticles by controlled solid-state dewetting of a metal film on stepped alumina substrates. In situ transmission electron microscopy studies reveal that the dewetting process starts with nucleation of ordered dry regions on the substrate. The chemical potential difference between concave and convex surface regions induces anisotropic metal diffusion leading to the formation of nanowires in the valleys. The nanowires fragment due to Rayleigh instability forming arrays of metal nanoparticles on the substrate. The length scale of reconstruction relative to the starting film thickness is an important parameter in controlling the spatial order of the nanoparticles.