921 resultados para CERAMIC SAMPLES
Resumo:
We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi(1.65)Pb(0.35)Sr(2)Ca(2) Cu(3)O(10+delta) (Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f similar to 1 Hz) with maximum amplitude B(max) approximate to 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B(a)(t(i)), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T(c) superconductors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Experimental and theoretical studies on the magnetic field dependence of the electrical resistance R(B(a)) and the transport noise (TN) in polycrystalline high-T(c) superconductors subjected to different uniaxial compacting pressures were conducted. X-ray diffraction rocking curves were performed in different surfaces of the samples in order to investigated the degree of texture The results indicated an improvement of the degree of texture with increasing the uniaxial compacting pressure In theoretical simulations of the data, the polycrystalline superconductors were described as a series-parallel array of Josephson devices The intergranular magnetic field is described within the framework of the intragranular flux-trapping model and the distribution of the grain-boundary angles is assumed to follow the Rayleigh statistical function The proposed model describes well the experimental magnetoresistance R(B(a)) data We have found that the behavior of the R(B(a)) curves changes appreciably when different uniaxially compacting pressures are applied to the sample and such a changes are reproduced by the model when different grain-boundary angles distributions are used In addition, changes in the R(B(a)) dependence have their counterparts in the experimental transport noise signals (C) 2009 Elsevier B.V. All rights reserved
Resumo:
In this study, 13 ceramic samples were subjected to dissolution using three different procedures: (a) acid attack in open PTFE vessels with a mixture of HF-HClO4, (b) fusion of the sample with lithium metaborate and (c) microwave digestion in PTFE bombs. The samples used in the study had been previously analyzed by neutron activation analysis (NAA), X-ray fluorescence (XRF) and X-ray diffraction (XRD) and they cover a wide range of ceramics fired in different atmospheres and temperatures as well as different mineralogical and chemical compositions. The effectiveness of each procedure is evaluated in terms of its ability to dissolve the various mineralogical phases of the samples, of the number of elements that can be determined and of the time needed for the whole scheme of analysis to be completed.
Resumo:
We performed measurements of electrical resistivity as a function of temperature, rho(T), in polycrystalline samples of YBa(2)Cu(3)O(7-delta) (Y-123) subjected to different uniaxial compacting pressures. We observed by using X-ray diffractometry that samples have a very similar composition. Most of the identified peaks are related to the superconducting Y-123 phase. Also, from the X-ray diffraction patterns performed, in powder and pellet samples, we estimated the Lotgering factor along the (00l) direction, F((00l)). The results indicate that F((00l)) increases from 0.13 to 0.16. From electrical resistivity measurements as a function of temperature, we were able to separate contributions arising from both the grain misalignment and microstructural defects. We found appreciable degradation in the normal-state transport properties of samples with an increase in uniaxial compacting pressure. It seems that this type of behavior is associated with an increase in the influence of microstructural defects at the intergranular level. The experimental results are analyzed in the framework of a current conduction model of granular samples.
Resumo:
The pulsed electric acoustic technique, PEA, has been usually applied to probe space charge profiles in polymers. Preliminary PEA results using a ferroelectric ceramic are presented. If the reverse applied electric field i of the order of the coercive field the switching polarization process occurs in a period larger than hundreds of seconds. Such a slow process allows one to use the PEA setup to follow the polarization switching dynamics and determine the electric field profile. The PEA signal obtained in the lead zirconate-titanate doped with niobium ceramic, PZTN, indicates that the polarization distribution and field are not uniform during the switching period. We were also able to observe that the acoustic wave velocity and attenuation depends on the stage of the polarization switching, which agrees with results obtained using the ultrasonic method.
Flux-Line-Lattice Melting and Upper Critical Field of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta Ceramic Samples
Resumo:
We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.
Resumo:
We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.
Resumo:
The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.
Resumo:
This study evaluated, by scanning electron microscope (SEM) and EDS, the effect of different strategies for silica coating (sandblasters, time and distance) of a glass-infiltrated ceramic (In-Ceram Alumina). Forty-one ceramic blocks were produced. For comparison of the three air-abrasion devices, 15 ceramic samples were divided in three groups (N.=5): Bioart, Microetcher and Ronvig (air-abrasion parameters: 20 s at a distance of 10 mm). For evaluation of the time and distance factors, ceramic samples (N.=5) were allocated in groups considering three applied times (5 s, 13 s and 20 s) and two distances (10 mm and 20 mm), using the Ronvig device. In a control sample, no surface treatment was performed. After that, the micro-morphologic analyzes of the ceramic surfaces were made using SEM. EDS analyzes were carried out to detect the % of silica on representative ceramic surface. ANOVA and Tukey tests were used to analyze the results. One-way ANOVA showed the silica deposition was different for different devices (P=0.0054). The Ronvig device promoted the highest silica coating compared to the other devices (Tukey test). Two-way ANOVA showed the distance and time factors did not affect significantly the silica deposition (application time and distance showed no statistical difference). The Ronvig device provided the most effective silica deposition on glass-infiltrated alumina ceramic surface and the studied time and distance for air-abrasion did not affect the silica coating.
Resumo:
This study sought to evaluate the resin micro-tensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5x5x6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9% HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37 degrees C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (alpha=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This work presents a comprehensive study about the influence of Ba-substitution on the structural and ferroelectric properties of Pb1-xBaxZr0.40Ti0.60O3 (PBZT) ceramic system. Pb1-xBaxZr0.40Ti0.60O3 ceramic samples were then prepared by solid state reaction method and characterized as a function of composition and temperature by X-ray diffraction (XRD) and impedance spectroscopy techniques. The dielectric measurements show that the substitution of Pb2+ for Ba2+ ions leads to a diffuse behavior of the dielectric permittivity curves for all samples and that only the x = 0.50 sample presents a typical relaxor behavior. In good agreement with dielectric measurements, the structural phase transition study showed a phase transition from a tetragonal structure with P4mm space group to a cubic structure with Pm-3m space group for all samples, except for the x = 0.50 sample were a cubic structure was observed in the complete temperature interval measured.
Resumo:
An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.
Resumo:
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties. (C) 2008 Elsevier B.V. All rights reserved.