744 resultados para CELLULOSE-ACETATE POLYMER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of polyacrylamide-cellulose acetate hydrogels by precipitation polymerization in acetone solution is reported herein. These hydrogels exhibit smaller swelling ratios and larger compression moduli than homo polyacrylamide hydrogels. For cellulose acetate concentrations above 20 wt.%, hydrogels with N,N'-methylenebisacrylamide as a crosslinker exhibit swelling ratios and compression moduli similar to those of the hydrogels without the crosslinker. A possible explanation for this behavior is that cellulose acetate crosslinks polyacrylamide via free-radical reaction. The hydrogels obtained without the N,N'-methylenebisacrylamide crosslinker exhibit compression moduli up to 1.7 MPa, making them suitable for tissue engineering applications such as cartilage replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmosedimentation is a new membrane-assisted separation technique, based on the rapid approach to sedimentation equilibrium when macromolecular solutions are contained within dialysis cells, in contact with solvent via a permselective membrane. Cellulose acetate membranes, cast from ternary solvent (acetone, acetic acid, water) solutions are suitable for osmosedimentation of proteins at low (2000 rpm) centrifugation speeds. Solute retention is improved when acetone-rich casting solutions are used. These membranes were examined by electron and optical microscopy, showing considerable morphological changes in the membrane support layer as the casting solution composition is changed. © 1986.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All textile uses of cellulose acetate involve acetone recovery, which, because of safety issues, results in large installations, in order to work with dilute streams. This compromises the efficiency of all of the involved unit operations, in this case, acetone absorption in cold water, acetone distillation, and water chilling, making them more expensive. The present article proposes the improvement of the absorption of acetone in water, traditionally performed with sieve trays, by using structured packing instead. The advantageous implementation was enabled through the utilization of a calculation methodology based on concepts of thermodynamic equilibrium of the binary acetone/water system and empirical relations that allow the evaluation of the hydrodynamics of the proposed modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen from Yersinia pestis was adsorbed on cellulose acetate discs (0.5 cm of diameter) which were obtained from dialysis membrane by using a paper punch. ELISA for human plague diagnosis was carried out employing this matrix and was capable to detect amount of 1.3 µg of antigen, 3,200 times diluted positive serum using human anti-IgG conjugate diluted 1:4,000. No relevant antigen lixiviation from the cellulose acetate was observed even after washing the discs 15 times. The discs were impregnated by the coloured products from the ELISA development allowing its use in dot-ELISA. Furthermore, cellulose acetate showed a better performance than the conventional PVC plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose acetate (CA) is one of the most important cellulose derivatives and its main applications are its use in membranes, films, fibers, plastics and filters. CAs are produced from cellulose sources such as: cotton, sugar cane bagasse, wood and others. One promissory source of cellulose is bacterial cellulose (BC). In this work, CA was produced from the homogeneous acetylation reaction of bacterial cellulose. Degree of substitution (DS) values can be controlled by the acetylation time. The characterization of CA samples showed the formation of a heterogeneous structure for CA samples submitted to a short acetylation time. A more homogeneous structure was produced for samples prepared with a long acetylation time. This fact changes the thermal behavior of the CA samples. Thermal characterization revealed that samples submitted to longer acetylation times display higher crystallinity and thermal stability than samples submitted to a short acetylation time. The observation of these characteristics is important for the production of cellulose acetate from this alternative source. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the viability of recycling newspaper for producing cellulose acetate was tested. Newspaper recycling is extremely important not only for the environment preservation, but also from the economical point of view of aggregating value to this residue. Cellulose acetate was produced from a homogeneous acetylation, and then characterized by FTIR, DSC and TGA. Acetylation times were 48 h for as received newspaper (CA48) and 24 h for delignified newspaper (CA24), resulting in cellulose diacetate (DS = 1.98 +/- 0.22) for CA48 and cellulose triacetate (DS = 2.79 +/- 0.02) for CA24, respectively. Membranes of these materials were produced and characterized according to the previously mentioned techniques and by measurements of water vapor flux, which were compared to membranes of nanofiltration SG from Osmonix (R). Results showed that independently of a purification step, it is possible to produce cellulose acetate membranes through the chemical recycling of newspaper and that membrane CA24 presents thermal stability comparable to membranes produced of commercial cellulose acetate. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: We report our results using Onyx HD-500 (Micro Therapeutics, Inc., Irvine, CA) in the endovascular treatment of wide-neck intracranial aneurysms, which have a high rate of incomplete occlusion and recanalization with platinum coils. METHODS: Sixty-nine patients with 84 aneurysms were treated. Most of the aneurysms were located in the anterior circulation (80 of 84 aneurysms), were unruptured (74 of 84 aneurysms), and were incidental. Ten presented with subarachnoid hemorrhage, and 15 were symptomatic. All aneurysms had wide necks (neck >4 mm and/or dome-to-neck ratio <1.5). Fifty aneurysms were small (<12 mm), 30 were large (12 to <25 mm) and 4 were giant. Angiographic follow-up was available for 65 of the 84 aneurysms at 6 months, for 31 of the 84 aneurysms at 18 months, and for 5 of the 84 aneurysms at 36 months. RESULTS: Complete aneurysm occlusion was seen in 65.5% of aneurysms on immediate control, in 84.6% at 6 months, and in 90.3% at 18 months. The rates of complete occlusion were 74%, 95.1%, and 95.2% for small aneurysms and 53.3%, 70%, and 80% for large aneurysms at the same follow-up periods. Progression from incomplete to complete occlusion was seen in 68.2% of all aneurysms, with a higher percentage in small aneurysms (90.9%). Aneurysm recanalization was observed in 3 patients (4.6%), with retreatment in 2 patients (3.3%). Procedural mortality was 2.9%. Overall morbidity was 7.2%. CONCLUSION: Onyx embolization of intracranial wide-neck aneurysms is safe and effective. Morbidity and mortality rates are similar to those of other current endovascular techniques. Larger samples and longer follow-up periods are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mat of electrospun cellulose fibers are deposed on transparent conductive oxide covered glass, and two such plates enclose a nematic liquid crystal. Thus two new types of Cellulose based Polymer Dispersed Liquid Crystal devices, based on hydroxypropylcellulose and Cellulose Acetate and the nematic liquid crystal E7 have been obtained. The current-voltage characteristics indicates ionic type conduction. Heating-cooling cycles have been applied on the samples and the activation energies have been determined. Simultaneously with the thermo-stimulated currents, the optical transmission dependence on the d.c. electric field and temperature was registered. ON-OFF switching times have been determined for different control voltages. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose acetate (CA)-silver (Ag) nanocomposite asymmetric membranes were prepared via the wet-phase inversion method by dispersing polyvinylpirrolydone-protected Ag nanoparticles in the membrane casting solutions of different compositions. Silver nanoparticles were synthesized ex situ and added to the casting solution as a concentrated aqueous colloidal dispersion. The effects of the dispersion addition on the structure and on the selective permeation properties of the membranes were studied by comparing the nanocomposites with the silver-free materials. The casting solution composition played an important role in the adequate dispersion of the silver nanoparticles in the membrane. Incorporation of nanoscale silver and the final silver content resulted in structural changes leading to an increase in the hydraulic permeability and molecular weight cut-off of the nanocomposite membranes. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41796.