932 resultados para CELLULAR-AUTOMATON
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.
Resumo:
The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.
Resumo:
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.
Resumo:
We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.
Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
Resumo:
We investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Language extinction as a consequence of language shifts is a widespread social phenomenon that affects several million people all over the world today. An important task for social sciences research should therefore be to gain an understanding of language shifts, especially as a way of forecasting the extinction or survival of threatened languages, i.e., determining whether or not the subordinate language will survive in communities with a dominant and a subordinate language. In general, modeling is usually a very difficult task in the social sciences, particularly when it comes to forecasting the values of variables. However, the cellular automata theory can help us overcome this traditional difficulty. The purpose of this article is to investigate language shifts in the speech behavior of individuals using the methodology of the cellular automata theory. The findings on the dynamics of social impacts in the field of social psychology and the empirical data from language surveys on the use of Catalan in Valencia allowed us to define a cellular automaton and carry out a set of simulations using that automaton. The simulation results highlighted the key factors in the progression or reversal of a language shift and the use of these factors allowed us to forecast the future of a threatened language in a bilingual community.
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.