929 resultados para CELLULAR SENESCENCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this single-center, cross-sectional study, we evaluated 44 very long-term survivors with a median follow-up of 17.5 years (range, 11-26 years) after hematopoietic stem cell transplantation. We assessed the telomere length difference in human leukocyte antigen-identical donor and recipient sibling pairs and searched for its relationship with clinical factors. The telomere length (in kb, mean +/- SD) was significantly shorter in all recipient blood cells compared with their donors' blood cells (P < .01): granulocytes (6.5 +/- 0.9 vs 7.1 +/- 0.9), naive/memory T cells (5.7 +/- 1.2 vs 6.6 +/- 1.2; 5.2 +/- 1.0 vs 5.7 +/- 0.9), B cells (7.1 +/- 1.1 vs 7.8 +/- 1.1), and natural killer/natural killer T cells (4.8 +/- 1.0 vs 5.6 +/- 1.3). Chronic graft-versus-host disease (P < .04) and a female donor (P < .04) were associated with a greater difference in telomere length between donor and recipient. Critically short telomeres have been described in degenerative diseases and secondary malignancies. If this hypothesis can be confirmed, identification of recipients at risk for cellular senescence could become part of monitoring long-term survivors after hematopoietic stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Id family of helix–loop–helix (HLH) transcriptional regulatory proteins does not possess a basic DNA-binding domain and functions as a negative regulator of basic HLH transcription factors. Id proteins coordinate cell growth and differentiation pathways within mammalian cells and have been shown to regulate G1-S cell-cycle transitions. Although much recent data has implicated Id1 in playing a critical role in modulating cellular senescence, no direct genetic evidence has been reported to substantiate such work. Here we show that Id1-null primary mouse embryo fibroblasts undergo premature senescence despite normal growth profiles at early passage. These cells possess increased expression of the tumor-suppressor protein p16/Ink4a but not p19/ARF, and have decreased cyclin-dependent kinase (cdk) 2 and cdk4 kinase activity. We also show that Id1 is able to directly inhibit p16/Ink4a but not p19/ARF promoter activity via its HLH domain, and that Id1inhibits transcriptional activation at E-boxes within the p16/Ink4a promoter. Our data provide, to our knowledge, the first genetic evidence for a role for Id1 as an inhibitor of cellular senescence and suggest that Id1 functions to delay cellular senescence through repression of p16/Ink4a. Because epigenetic and genetic abrogation of p16/Ink4a function has been implicated in the evolution of several human malignancies, we propose that transcriptional regulation of p16/Ink4a may also provide a mechanism for the dysregulation of normal cellular growth controls during the evolution of human malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast gene KEM1 (also named SEP1/DST2/XRN1/RAR5) produces a G4-DNA-dependent nuclease that binds to G4 tetraplex DNA structure and cuts in a single-stranded region 5' to the G4 structure. G4-DNA generated from yeast telomeric oligonucleotides competitively inhibits the cleavage reaction, suggesting that this enzyme may interact with yeast telomeres in vivo. Homozygous deletions of the KEM1 gene in yeast block meiosis at the pachytene stage, which is consistent with the hypothesis that G4 tetraplex DNA may be involved in homologous chromosome pairing during meiosis. We conjectured that the mitotic defects of kem1/sep1 mutant cells, such as a higher chromosome loss rate, are also due to failure in processing G4-DNA, especially at telomeres. Here we report two phenotypes associated with a kem1-null allele, cellular senescence and telomere shortening, that provide genetic evidence that G4 tetraplex DNA may play a role in telomere functioning. In addition, our results reveal that chromosome ends in the same cells behave differently in a fashion dependent on the KEM1 gene product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular senescence is a stable arrest of cell proliferation induced by several factors such as activated oncogenes, oxidative stress and shortening of telomeres. Senescence acts as a tumour suppression mechanism to halt the progression of cancer. However, senescence may also impact negatively upon tissue regeneration, thus contributing to the effects of ageing. The eukaryotic genome is controlled by various modes of transcriptional and translational regulation. Focus has therefore centred on the role of long non- coding RNAs (lncRNAs) in regulating the genome. Accordingly, understanding how lncRNAs function to regulate the senescent genome is integral to improving our knowledge and understanding of tumour suppression and ageing. Within this study, I set out to investigate the expression of lncRNAs’ expression within models of senescence. Through a custom expression array, I have shown that expression of multiple different lncRNAs is up-regulated and down regulated in IMR90 replicative senescent fibroblasts and oncogene-induced senescent melanocytes. LncRNA expression was determined to be specific to stable senescence-associated cell arrest and predominantly within the nucleus of senescent cells. In order to examine the function of lncRNA expression in senescence, I selected lncRNA transcript ENST0000430998 (lncRNA_98) to focus my investigations upon. LncRNA_98 was robustly upregulated within multiple models of senescence and efficiently depleted using anti-sense oligonucleotide technology. Characterisation and unbiased RNA-sequencing of lncRNA_98 deficient senescent cells highlighted a list of genes that are regulated by lncRNA_98 expression in senescent cells and may regulate aspects of the senescence program. Specifically, the formation of SAHF was impeded upon depletion of lncRNA_98 expression and levels of total pRB protein expression severely decreased. Validation and recapitulation of consequences of pRB depletion was confirmed through lncRNA_98 knock-out cells generated using CRISPR technology. Surprisingly, inhibition of ATM kinase functions permitted the restoration of pRB protein levels within lncRNA_98 deficient cells. I propose that lncRNA_98 antagonizes the ability of ATM kinase to downregulate pRB expression at a post-transcriptional level, thereby potentiating senescence. Furthermore, lncRNA expression was detected within fibroblasts of old individuals and visualised within senescent melanocytes in human benign nevi, a barrier to melanoma progression. Conversely, mining of 337 TCGA primary melanoma data sets highlighted that the lncRNA_98 gene and its expression was lost from a significant proportion of melanoma samples, consistent with lncRNA_98 having a tumour suppressor functions. The data presented in this study illustrates that lncRNA_98 expression has a regulatory role over pRB expression in senescence and may regulate aspects of tumourigenesis and ageing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 mu M) or quercetin (25 mu M) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 mu M) and quercetin (25 mu M) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence-like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655-1662).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a widely expressed neurotransmitter in the central and peripheral nervous systems. Thymidine 1128 to cytocine substitution in the signal sequence of the preproNPY results in a single amino acid change where leucine is changed to proline. This L7P change leads to a conformational change of the signal sequence which can have an effect on the intracellular processing of NPY. The L7P polymorphism was originally associated with higher total and LDL cholesterol levels in obese subjects. It has also been associated with several other physiological and pathophysiological responses such as atherosclerosis and T2 diabetes. However, the changes on the cellular level due to the preproNPY signal sequence L7P polymorphism were not known. The aims of the current thesis were to study the effects of the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes in primary cultured and genotyped human umbilical vein endothelial cells (HUVEC), in neuroblastoma (SK-N-BE(2)) cells and in fibroblast (CHO-K1) cells. Also, the putative effects of the L7P polymorphism on proliferation, apoptosis and LDL and nitric oxide metabolism were investigated. In the course of the studies a fragment of NPY targeted to mitochondria was found. With the putative mitochondrial NPY fragment the aim was to study the translational preferences and the mobility of the protein. The intracellular distribution of NPY between the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes was found to be different. NPY immunoreactivity was prominent in the [p.L7]+[p.P7] cells while the proNPY immunoreactivity was prominent in the [p.L7]+[p.L7] genotype cells. In the proliferation experiments there was a difference in the [p.L7]+[p.L7] genotype cells between early and late passage (aged) cells; the proliferation was raised in the aged cells. NPY increased the growth of the cells with the [p.L7]+[p.P7] genotype. Apoptosis did not seem to differ between the genotypes, but in the aged cells with the [p.L7]+[p.L7] genotype, LDL uptake was found to be elevated. Furthermore, the genotype seemed to have a strong effect on the nitric oxide metabolism. The results indicated that the mobility of NPY protein inside the cells was increased within the P7 containing constructs. The existence of the mitochondria targeted NPY fragment was verified, and translational preferences were proved to be due to the origin of the cells. Cell of neuronal origin preferred the translation of mature NPY (NPY1-36) when compared to the non neuronal cells that translated both, NPY and the mitochondrial fragment of NPY. The mobility of the mitochondrial fragment was found to be minimal. The functionality of the mitochondrial NPY fragment remains to be investigated. L7P polymorphism in the preproNPY causes a series of intracellular changes. These changes may contribute to the state of cellular senescence, vascular tone and lead to endothelial dysfunction and even to increased susceptibility to diseases, like atherosclerosis and T2 diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: A growing biological research field is the cellular senescence, a mechanism that has been associated, under certain circumstances, with malignant transformation. Given the high incidence of ovarian cancer and its main origin from the ovarian surface epithelium, as well as the possibility that an epithelial-mesenchymal transition occurs, we evaluated both the in vitro growth of stromal fibroblasts from the ovarian cortex and their β-galactosidase activity at pH 6, enzyme whose expression is considered as a marker of replicative senescence. Methods: 48 samples of ovarian cortical fibroblasts from donors without a history of cancer were serially cultured until the end of their replicative life. β-galactosidase activity at pH 6 was quantified in each passage by the chemiluminiscent method. As control, we used ovarian epithelial cell cultures from the same donors. The enzyme activity was also evaluated in fibroblasts previously induced to senescence by exposure to hydrogen peroxide. Results: The analysis of the enzyme activity and the replicative capacity taken together showed that the fibroblast cultures reached the senescent state at passages 4-5, as what happened with the control epithelial cells. Fibroblasts induced to senescence showed high variability in the values of enzymatic activity. Conclusions: The similarity between both types of cells in reaching the senescent state deserves to be taken into account in relation to the epithelialmesenchymal transition that has been proposed to explain their behavior in the genesis of cancer arising from ovarian surface epithelium. Low β-galactosidase activity values at pH 6 would suggest possible inactivation of the response pathways to oxidative stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oncogene-induced cellular senescence (OIS) is an increasingly recognized tumour suppressor mechanism that confines the outgrowth of neoplastic cells in vivo. It relies on a complex signalling network, but only few components have been identified so far. Gene-expression profiling revealed a >100-fold increase in the levels of the transcription factor and putative tumour suppressor gene TGFβ-stimulated clone 22 (TSC22D1) in BRAF(E600)-induced senescence, in both human fibroblasts and melanocytes. Only the short TSC22D1 transcript was upregulated, whereas the abundance of the large protein variant was suppressed by proteasomal degradation. The TSC22D1 protein variants, in complex with their dimerization partner TSC22 homologue gene 1 (THG1), exerted opposing functions, as selective depletion of the short form, or conversely, overexpression of the large variant, resulted in abrogation of OIS. This was accompanied by the suppression of several inflammatory factors and p15(INK4B), with TSC22D1 acting as a critical effector of C/EBPβ. Our results demonstrate that the differential regulation of antagonistic TSC22D1 variants is required for the establishment of OIS and suggest distinct contributions of TSC22 family members to the progression of BRAF(E600)-driven neoplasia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^