946 resultados para CELL-WALL INTEGRITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity. © 2013 Galvão et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PKC1–MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1–green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1–MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscΔ mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS–cAMP pathway. The RAS–cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscΔ strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was carried out to verify if Saccharomyces cerevisiae cell wall (SCCW) dietary supplementation (0.2%) was capable of protecting the intestinal mucosa of broiler chickens vaccinated against coccidiosis. Body weight gain, feed intake, feed conversion and intestinal mucosa morphometric parameters and epithelial loss were evaluated. In the experiment,400 day-old male chicks were distributed according to a completely randomized design in a 2x2 factorial arrangement. The following treatments were applied: T1 - no vaccination/ no SCCW supplementation; T2 - no vaccination/SCCW supplementation; T3 - vaccination/no SCCW supplementation; and T4 - vaccination/SCCW supplementation to four replicates of 25 birds each. Birds were vaccinated on the first day of age using a spray vaccine (Coccivac B®, Coopers), containing E. acervulina, E. maxima, E. mivati and E. tenella. S. cerevisiae cell wall was supplied from the first day of age. Live performance, intestinal morphometric parameters and epithelial loss were evaluated at 14, 21 and 28 days of age. Performance was affected by vaccination only at 21-days of age, when body weight gain was reduced in the vaccinated birds, but no body weight difference was observed on day 28. Vaccine also increased the crypt depth (p<0.05) in the duodenum and jejunum, suggesting a high cell activity in the crypt:villus transition area to maintain the epithelial cell turnover. Villi number/area (103,269 µm²) was not affected (p>0.05) by vaccine or cell wall supplementation, and epithelial loss was more pronounced in the duodenum and jejunum. In conclusion, the findings of this study suggest that S. cerevisiae cell wall supplementation may be an useful management tool to maintain the intestinal integrity of broilers vaccinated against coccidiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water removal during drying depends on the pathway of water migration from food materials. Moreover, the water removal rate also depends on the characteristics of the cell wall of plant tissue. In this study, the influence of cell wall properties (such as moisture distribution, stiffness, thickness and cell dimension) on porosity and shrinkage of dried product was investigated. Cell wall stiffness depends on a complex combination of plant cell microstructure, composition of food materials and the water-holding capacity of the cell. In this work, a preliminary investigation of the cell wall properties of apple was conducted in order to predict changes of porosity and shrinkage during drying. Cell wall characteristics of two types of apple (Granny Smith and Red Delicious) were investigated under convective drying to correlate with porosity and shrinkage. A scanning electron microscope (SEM), 2kN Intron, pycnometer and ImageJ software were used in order to measure and analyse cell characteristics, water holding capacity of cell walls, porosity and shrinkage. The cell firmness of the Red Delicious apple was found to be higher than for Granny Smith apples. A remarkable relationship was observed between cell wall characteristics when compare with heat and mass transfer characteristics. It was also found that the evolution of porosity and shrinkage are noticeably influenced by the nature of the cell wall during convective drying. This study has revealed a better understanding of porosity and the shrinkage of dried food at microscopy (cell) level, and will provide better insights to attain energy-effective drying processes and improved quality of dried foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

a,a-Trehalose induced a rapid blackening of the terminal 2.5-centimete region of excised Cuscuta relexa Roxb. vine. The incorporation of radioactivite from [I'C]glucose into alkali-insoluble fraction of shoot tip was markedly inhibited by 12 hours of trehalose feeding to an excised vine. This inhibition was confied to the apical segment of the vine in which cell elongation occurred. The rate of blackening of shoot tip explants was hastened by the addition of gibberellic acid A3, which promoted elongationgrowth of isolated Cuscuta shoot tips. The symptom of trehalose toxicity was duplicated by 2-deoxygucose, which has been shown to ba potent inhibitor of ceD wall synthesis in yeast. The observations suggest that trehalose interferes with the synthesis of ceDl wail polysaccharides, the chief component of which was presumed to be cellulose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthocyanins are located within the vacuole of plant cells, and are released following cell rupture during eating or processing at which time they first come into contact with the plant cell wall. The extent of anthocyanin-cell wall interaction was investigated by monitoring the rate of anthocyanin depletion in the presence of pure cellulose or cellulose-pectin composites as cell wall models. It was found that anthocyanins interact with both cellulose and pectin over a two-stage process with initially (mins-hours) 13 similar to 18% of anthocyanins binding to cellulose or cellulose/pectincomposites. With prolonged exposure (days-weeks), a gradual increase in anthocyanin binding occurs, possibly due to anthocyanins stacking on top of a base layer. Binding of acylated and non-acylated anthocyanins followed a similar pattern with slightly more (5-10%) binding of the acylated forms. Composites with the highest pectin content had the greatest anthocyanin binding suggesting the existence of both ionic interactions (with pectin) and hydrophobic interactions (with cellulose) of anthocyanin with plant cell walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30 s-1 h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid > chlorogenic acid > ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.