996 resultados para CELL ULTRASTRUCTURE
Resumo:
The purpose of this study was to determine whether intracameral commercial lidocaine 2% induces alterations on the rabbit corneal endothelium. Forty white rabbits received different substances inside the anterior chamber: group (G)1, no substance; G2 and G3 received lidocaine 2% with preservative in aqueous solution; G4 and G5, lidocaine 2% with preservative in gel solution; G6 and G7, the anesthetic preservative (metilparahydroxybenzoate 0.1%); and G8 and G9, lidocaine 2% without preservative in aqueous solution. The animals from G2, 4, 6 and 8 were sacrificed after 1 h, and from G3, 5, 7 and 9 after 24 h after injection of the substance inside the anterior chamber. The corneas were clinically evaluated and assessed by transmission and scanning electron microscopy. G1, 2, 6, 7, 8 and 9 animals had very similar characteristics in clinical, ultrastructural and morphometric evaluations; the G3 and G4 animals showed discrete edema and one animal in G5 had intense corneal edema. We conclude that lidocaine 2% with preservative induces few ultrastructural alterations in the corneal endothelial cells.
Resumo:
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.
Resumo:
The effects of diets with variable zinc levels on the midgut epithelial cells were studied in Oreochromis niloticus L. One hundred and twenty fry of tilapia were apportioned into 4 experimental groups (I, II, III and IV groups), with 30 fish in each treatment, 5 replicate aquaria per treatment containing 6 fish each. The animals of the 4 groups were fed with isonitrogenous (30% crude protein) and isoenergetic (3000 Kcal/Kg of digestible energy) diets with increasing quantities of zinc (44.59; 149.17; 309.93; 599.67 mg Zn/kg of diet), twice a day, for 93 days. Three fish from each group were sacrificed at 36, 66 and 93 days and samples of midgut were removed for ultrastructural analysis. After 93 days of treatment, 3 animals of each experimental group were used for the analysis of zinc concentration by atomic absorption spectrophotometry. The comparative relative index (CRI) revealed that the animals in groups II, III and IV contained, respectively, 1.99%, 34.67% and 22.78% more zinc than the mean concentration in animals from group I. The ultrastructural analysis showed enterocytes with swelling of smooth surfaced endoplasmic reticulum and dilated mitochondria with variable matrix rarefaction and cristae number reduction in the fish exposed to 599.67 mg Zn/Kg of diet at 66 and 93 days of treatment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background and Aims Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics.Methods For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples.Key Results The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption.Conclusions Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diatraea saccharalis, the main pest of sugarcane, has been controlled by Cotesia flavipes. Very little is known about the effect of parasitism on the host organs, including the midgut. The Lepidoptera midgut epithelium is composed of columnar, goblet, regenerative, and endocrine cells. Spherites have been described in columnar and regenerative cells of several Lepidoptera species, and presented a lot of functional meaning. We identified spherites in the midgut epithelial cells of non-parasitized D. saccharalis larvae analyzed the effect of parasitism on spherite morphology and distribution along the length of the midgut. Midgut fragments of both non-parasitized and parasitized larvae were processed for transmission electron microscopy. All the midgut epithelial cells showed spherites, but they were not preferentially located in a particular part of the cells. Parasitized larvae had more spherites, mainly in the columnar cells, than non-parasitized larvae. This observation was associated with an ionic imbalance within the insect host. Spherites were more abundant in the anterior midgut region than in other regions, which suggests that this region is involved in ion transport by intracellular and/or paracellular route. The morphological variability of spherites in the cells of parasitized larvae was related to the developmental stages of these structures.
Resumo:
Class III tegumentar glands were studied in workers, as well as in queens and males when available, of 56 Meliponini species. The presence and development of these glands varies widely among and within species. However, the queen typically has more glands than do workers, and males rarely have any. Gland development in workers was evaluated by counting and determining the size of cells in histological sections. Laying queens were found to have more active gland cells than did virgins. Cell numbers and cell ultrastructure differed among glands similarly located in workers, queens and males. Cell size and ultrastructure also varied from tergite to tergite. In conclusion, since it is likely that most of them produce pheromones, the wide variability in these glands suggests that they are important to social interaction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper deals with the ultrastructural study of mature vampire bat Sertoli cells and their relationships with the different stages of testicular germ cells. In vampire bat seminiferous epithelium there are different types of junctional specializations among Sertoli cells and among Sertoli cells and different germ cells, with special emphasis to tight junctions and to junctions like as desmosomes. Ectoplasmic junctions through the Sertoli cells, including the smooth ER, are observed. These cellular interactions and their cytophysiological roles are discussed. Also are related some ultrastructural peculiarities of the Sertoli cell nucleus, nucleolus, cytoplasmic organelles and lipidic inclusions.