369 resultados para CDSE NANOCRYSTALS
Resumo:
We studied the effect of quantum confinement in Mn-doped InAs nanocrystals using theoretical methods. We observe that the stability of the impurities decreases with the size of the nanocrystals, making doping more difficult in small nanoparticles. Substitutional impurities are always more stable than interstitial ones, independent of the size of the nanocrystal. There is also a decrease in the energy difference between the high and low spin configurations, indicating that the critical temperature should decrease with the size of the nanoparticles, in agreement with experimental observations and in detriment to the development of functional spintronic devices with doped nanocrystals. Codoping with acceptors or saturating the nanocrystals with molecules that insert partially empty levels in the energy gap should be an efficient way to increase T(C).
Resumo:
Strong photoluminescent emission has been obtained from 3 nm PbS nanocrystals in aqueous colloidal solution, following treatment with CdS precursors. The observed emission can extend across the entire visible spectrum and usually includes a peak near 1.95 eV. We show that much of the visible emission results from absorption by higher-lying excited states above 3.0 eV with subsequent relaxation to and emission from states lying above the observed band-edge of the PbS nanocrystals. The fluorescent lifetimes for this emission are in the nanosecond regime, characteristic of exciton recombination.
Resumo:
Effective surface passivation of lead sulfide (PbS) nanocrystals (NCs) in an aqueous colloidal solution has been achieved following treatment with CdS precursors. The resultant photoluminescent emission displays two distinct components, one originating from the absorption band edge and the other from above the absorption band edge. We show that both of these components are strongly polarized but display distinctly different behaviours. The polarization arising from the band edge shows little dependence on the excitation energy while the polarization of the above-band-edge component is strongly dependent on the excitation energy. In addition, time-resolved polarization spectroscopy reveals that the above-band-edge polarization is restricted to the first couple of nanoseconds, while the band edge polarization is nearly constant over hundreds of nanoseconds. We recognize an incompatibility between the two different polarization behaviours, which enables us to identify two distinct types of surface-passivated PbS NC.
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
Photoluminescent emission is observed from surface-passivated PbS nanocrystals following the two-photon excitation of high-energy excitonic states. The emission appears directly at the excitation energy with no detectable Stokes-shift for a wide range of excitation energies. The observation of direct emission from states excited by two-photon absorption indicates that the parity of the excited states of surface-passivated PbS nanocrystals is partially mixed.
Resumo:
We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV), and we demonstrate electronic coupling between the two components.
Resumo:
In der vorliegenden Arbeit wurde die Fluoreszenzdynamik einzelner CdSe-Halbleiternanokristalle und isolierter Nanokristall/Farbstoff-Komplexe untersucht. Dazu wurde ein konfokales Mikroskop aufgebaut, mit dem Spektren und Zerfallskurven einzelner Fluorophore bei Raumtemperatur und tiefen Temperaturen bis zu 1.4 Kelvin gemessen werden konnten. Mit diesem Aufbau konnten erstmals Fluoreszenzlebenszeiten einzelner Nanokristalle mit der Methode des zeitkorrelierten Einzelphotonenzählens (timecorrelated single photon counting, TCSPC) bei Raumtemperatur und später auch bei tiefen Temperaturen bestimmt werden. Zur Auswertung der Daten wurden verschiedene Methoden entwickelt, um die Fluoreszenzdynamik aus den exponentiellen oder nicht-exponentiellen Zerfallskurven zu extrahieren. Die Interpretation der berechneten Ratenverteilung lässt auf eine Korrelation zwischen der Fluoreszenzintensität und der Fluoreszenzlebensdauer schließen, deren Ursache auf Quenchermoleküle zurückgeführt wird. Mit geringer werdender Fluoreszenzintensität zerfallen die Abklingkurven schneller und die Lebensdauern sind breiter verteilt. Messungen bei tiefen Temperaturen ermöglichte es zusätzlich die exzitonische Feinstruktur des Nanokristalls genauer zu Untersuchen. Hier zeigt sich eine deutliche Unterscheidung zwischen einer langsamen, temperaturabhängigen Zerfallskomponente (mit Zerfalssraten bis in den Mikrosekundenbereich) und einer schnellen, temperaturunabhängigen Zerfallsrate. Die gemessenen Ratenverteilungen bestätigten die berechneten theoretischen Zerfallsraten, jedoch auch weitere, mit bisherigen theoretischen Modellen nicht vereinbare, Raten. Schließlich wurden noch der Energietransfer zwischen Nanokristall-Farbstoffmolekül-Komplexen untersucht. Gemessene Abklingkurven der Nanokristall-Komponente bei 2 Kelvin wiesen gegenüber dem isolierten Nanokristall keine entsprechenden langsamen Zerfallsraten auf.
Resumo:
Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.
Resumo:
A novel one pot process has been developed for the preparation of PbS nanocrystals in the conjugated polymer poly 2-methoxy,5-(2 ethyl-hexyloxy-p-phenylenevinylene) (MEH-PPV). Current techniques for making such composite materials rely upon synthesizing the nanocrystals and conducting polymer separately, and subsequently mixing them. This multi-step technique has two serious drawbacks: templating surfactant must be removed before mixing, and co-solvent incompatibility causes aggregation. In our method, we eliminate the need for an initial surfactant by using the conducting polymer to terminate and template nanocrystal growth. Additionally, the final product is soluble in a single solvent. We present materials analysis which shows PbS nanocrystals can be grown directly in a conducting polymer, the resulting composite is highly ordered and nanocrystal size can be controlled.
Resumo:
A recently developed thermal lens spectrometry configuration has been used to study CdSe/ZnS core-shell quantum dots (QDs) suspended in toluene and tetrahydrofuran (THF) solvents. The special features of this configuration make it very attractive to measure fluorescence quantum yield (eta) excitation spectrum since it simplifies the measurement procedure and consequently improve the accuracy. Furthermore, the precision reached is much higher than in conventional photoluminescence (PL) technique. Two methods, called reference sample and multiwavelength have been applied to determine eta, varying excitation wavelength in the UV-visible region (between 335-543 nm). The eta and PL spectra are practically independent of the excitation wavelength. For CdSe/ZnS QDs suspended in toluene we have obtained eta=76 +/- 2%. In addition, the aging effect on eta and PL has been studied over a 200 h period for QDs suspended in THF. (C) 2010 American Institute of Physics. [doi:10.1063/1.3343517]
Resumo:
Fluorescent proteins from the green fluorescent protein family strongly interact with CdSe/ZnS and ZnSe/ZnS nanocrystals at neutral pH. Green emitting CdSe/ZnS nanocrystals and red emitting fluorescent protein dTomato constitute a 72% efficiency FRET system with the largest alteration of the overall photoluminescence profile, following complex formation, observed so far. The substitution of ZnSe/ZnS for CdSe/ZnS nanocrystals as energy donors enabled the use of a green fluorescent protein, GFP5, as energy acceptor. Violet emitting ZnSe/ZnS nanocrystals and green GFP5 constitute a system with 43% FRET efficiency and an unusually strong sensitized emission. ZnSe/ZnS-GFP5 provides a cadmium-free, high-contrast FRET system that covers only the high-energy part of the visible spectrum, leaving room for simultaneous use of the yellow and red color channels. Anisotropic fluorescence measurements confirmed the depolarization of GFP5 sensitized emission.
Resumo:
Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.
Resumo:
The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.