3 resultados para CD87
Resumo:
BACKGROUND: Urokinase plasminogen activator receptor (uPAR, CD87) is a widely distributed 55-kD, glycoprotein I-anchored surface receptor. On binding of its ligand uPA, it is known to increase leukocyte adhesion and traffic. Using genetically deficient mice, we explored the role of uPAR in platelet kinetics and TNF-induced platelet consumption. METHODS AND RESULTS: Anti-uPAR antibody stained platelets from normal (+/+) but not from uPAR-/- mice, as seen by fluorescence-activated cell sorter analysis. 51Cr-labeled platelets from uPAR-/- donors survived longer than those from +/+ donors when injected into a +/+ recipient. Intratracheal TNF injection induced thrombocytopenia and a platelet pulmonary localization, pronounced in +/+ but absent in uPAR-/- mice. Aprotinin, a plasmin inhibitor, decreased TNF-induced thrombocytopenia. TNF injection markedly reduced the survival and increased the pulmonary localization of 51Cr-labeled platelets from +/+ but not from uPAR-/- donors, indicating that it is the platelet uPAR that is critical for their response to TNF. As seen by electron microscopy, TNF injection increased the number of platelets and polymorphonuclear neutrophils (PMNs) in the alveolar capillaries of +/+ mice, whereas in uPAR-/- mice, platelet trapping was insignificant and PMN trapping was slightly reduced. Platelets within alveolar capillaries of TNF-injected mice were activated, as judged from their shape, and this was evident in +/+ but not in uPAR-/- mice. CONCLUSIONS: These results demonstrate for the first time the critical role of platelet uPAR for kinetics as well as for activation and endothelium adhesion associated with inflammation.
Resumo:
We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (-/-) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA(-/-) and uPAR(-/-) mice but was similar to that of the wild type (+/+) in tPA(-/-) mice. Parasitemia levels were similar in uPA(-/-), uPAR(-/-), and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR(-/-) mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR(-/-) mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA(-/-) and uPAR(-/-) mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR(-/-) mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR(-/-) mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR(-/-) mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.
Resumo:
Prostatic lesions such as prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy (PIA) are studied in human and canine species due to their malignance potential. The plasminogen activator (PA) system has been suggested to play a central role in cell adhesion, angiogenesis, inflammation, and tumor invasion. The urokinase-type plasminogen activator receptor (uPAR) is a component of the PA, with a range of expression in tumor and stromal cells. In this study, uPAR expression in both canine normal prostates and with proliferative disorders (benign prostatic hyperplasia-BPH, proliferative inflammatory atrophy-PIA, prostatic intraepithelial neoplasia-PIN, and carcinoma-PC) was evaluated by immunohistochemistry in a tissue microarray (TMA) slide to establish the role of this enzyme in extracellular matrix (ECM) remodeling and in the processes of tissue invasion. A total of 298 cores and 355 diagnoses were obtained, with 36 (10.1%) normal prostates, 46 (13.0%) with BPH, 128 (36.1%) with PIA, 74 (20.8%) with PIN and 71 (20.0%) with PC. There is variation in the expression of uPAR in canine prostate according to the lesion, with lower expression in normal tissue and with BPH, and higher expression in tissue with PIA, PIN and PC. The high expression of uPAR in inflammatory and neoplastic microenvironment indicates increased proteolytic activity in canine prostates with PIA, PIN, and PC.