989 resultados para CD4-Positive T-Lymphocytes -- immunology
Deregulated MHC class II transactivator expression leads to a strong Th2 bias in CD4+ T lymphocytes.
Resumo:
The MHC class II (MHC-II) transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC-II-restricted Ag presentation. Fine tuning of CIITA gene expression determines the cell type-specific expression of MHC-II genes. This regulation is achieved by the selective usage of multiple CIITA promoters. It has recently been suggested that CIITA also contributes to Th cell differentiation by suppressing IL-4 expression in Th1 cells. In this study, we show that endogenous CIITA is expressed at low levels in activated mouse T cells. Importantly CIITA is not regulated differentially in murine and human Th1 and Th2 cells. Ectopic expression of a CIITA transgene in multiple mouse cell types including T cells, does not interfere with normal development of CD4(+) T cells. However, upon TCR activation the CIITA transgenic CD4(+) T cells preferentially differentiate into IL-4-secreting Th2-type cells. These results imply that CIITA is not a direct Th1-specific repressor of the IL-4 gene and that tight control over the expression of CIITA and MHC-II is required to maintain the normal balance between Th1 and Th2 responses.
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.
Resumo:
We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.
Resumo:
By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.
Resumo:
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.
Resumo:
BACKGROUND: Both the human immunodeficiency virus (HIV) and hepatitis C virus (HCV), either alone or as coinfections, persist in their hosts by destroying and/or escaping immune defenses, with high morbidity as consequence. In some cases, however, a balance between infection and immunity is reached, leading to prolonged asymptomatic periods. We report a case of such an indolent co-infection, which could be explained by the development of a peculiar subset of Natural Killer (NK) cells. RESULTS: Persistently high peripheral levels of CD56+ NK cells were observed in a peculiar hemophiliac HIV/HCV co-infected patient with low CD4 counts, almost undetectable HIV viral load and no opportunistic infections. Thorough analysis of NK-subsets allowed to identify a marked increase in the CD56bright/dim cell ratio and low numbers of CD16+/CD56- cells. These cells have high levels of natural cytotoxicity receptors but low NCR2 and CD69, and lack both CD57 and CD25 expression. The degranulation potential of NK-cells which correlates with target cytolysis was atypically mainly performed by CD56bright NK-cells, whereas no production of interferon γ (IFN-γ) was observed following NK activation by K562 cells. CONCLUSIONS: These data suggest that the expansion and lytic capacity of the CD56bright NK subset may be involved in the protection of this « rare » HIV/HCV co-infected hemophiliac A patient from opportunistic infections and virus-related cancers despite very low CD4+ cell counts.
Resumo:
Mice from most inbred strains are resistant to infection with Leishmania major whereas mice from BALB strains are highly susceptible. Resistance and susceptibility result from the development of Th1 or Th2 cells, respectively. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Th1 cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4(+) T cells from IL-2(-/-) BALB/c mice showed that triggering of the early IL-4 response required autocrine IL-2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4(+) T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2.
Resumo:
The association of trans-acting T cell factors (TCFs) or lymphoid enhancer factor 1 (LEF-1) with their coactivator beta-catenin mediates transient transcriptional responses to extracellular Wnt signals. We show here that T cell maturation depends on the presence of the beta-catenin--binding domain in TCF-1. This domain is necessary to mediate the survival of immature CD4(+)CD8(+) double-positive (DP) thymocytes. Accelerated spontaneous thymocyte death in the absence of TCF-1 correlates with aberrantly low expression of the anti-apoptotic protein Bcl-x(L). Increasing anti-apoptotic effectors in thymocytes by the use of a Bcl-2 transgene rescued TCF-1-deficient DP thymocytes from apoptosis. Thus, TCF-1, upon association with beta-catenin, transiently ensures the survival of immature T cells, which enables them to generate and edit T cell receptor (TCR) alpha chains and attempt TCR-mediated positive selection.
Resumo:
After inoculation of Leishmania major, a rapid production of IL-4 by LACK-specific CD4+ T cells has been shown to drive Th2 cell development in susceptible mice i.e. BALB/c and C57BL/6 mice rendered susceptible by neutralization of IFN-gamma at the onset of infection. Here, we showed that peptide AA 156-173 induced an early IL-4 mRNA expression not only in BALB/c mice but also in resistant B10.D2 mice when IFN-gamma is neutralized. Epitope mapping of LACK protein demonstrated that peptide containing AA 293-305 induced early IL-4 mRNA transcripts in susceptible H-2b mice i.e. BALB/b and resistant C57BL/6 mice when IFN-gamma is neutralized. Stringently, the early IL-4 response to the H-2d (AA 156-173) or the H-2b (AA 293-305) epitopes occurred in V beta 4 V alpha 8 CD4+ T cells from either H-2d or H-2b susceptible mice, respectively.
Resumo:
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
The nature of the mysterious minor lymphocyte stimulating (Mls) antigens has recently been clarified. These molecules which were key elements for our current understanding of immune tolerance, have a strong influence on the mouse immune system and are encoded by the open reading frame (orf) of endogenous and exogenous mouse mammary tumor viruses (MMTV's). The knowledge that these antigens are encoded by cancerogenic retroviruses opens an interdisciplinary approach for understanding the mechanisms of immune responses and immune tolerance, retroviral carcinogenesis, and retroviral strategies for infection.
Resumo:
Our study describes tissue-specific migration of T and B cells during a localized anti-viral immune response. After mouse mammary tumor virus (MMTV) injection, B lymphocytes of the draining lymph node become infected and present a retroviral superantigen to CD4(+) T lymphocytes. Infected B cells receive superantigen-mediated help in a fashion comparable to classical immune responses. To investigate the fate of T and B lymphocytes that had interacted via cognate help in the same peripheral lymph node microenvironment we adoptively transferred them into naive recipients. Here we show that MMTV-infected B cells and superantigen-stimulated T cells were programmed to migrate to distinct sites of the body. Plasmablasts but not T cells migrated to the mammary gland and activated alpha4beta1 integrins were found to have a crucial role in the migration to the mammary gland. In contrast, T cells had a much higher affinity for secondary lymphoid organs and large intestine. This demonstrates that upon antigen-driven B and T lymphocyte interaction in the local draining lymph node a subset-specific homing program for B and T lymphocytes is induced.
Resumo:
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.
Resumo:
During their development, immature CD4+ CD8+ thymocytes become committed to either the CD4 or CD8 lineage. Subsequent complete maturation of CD4+ and CD8+ cells requires a molecular match of the expressed coreceptor and the MHC specificity of the TCR. The final size of the mature CD4+ and CD8+ thymic compartments is therefore determined by a combination of lineage commitment and TCR-mediated selection. In humans and mice, the relative size of CD4+ and CD8+ peripheral T cell compartments shows marked genetic variability. We show here that genetic variations in thymic lineage commitment, rather than TCR-mediated selection processes, are responsible for the distinct CD4/CD8 ratios observed in common inbred mouse strains. Genetic variations in the regulation of lineage commitment open new ways to analyze this process and to identify the molecules involved.