58 resultados para CCR2-V64I


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphisms of chemokines and chemokine-receptors genes have been shown to influence the rate of progression to AIDS; however, their influence on response to HAART remains unclear. We investigated the frequency of the SDF-1-3`A, CCR2-64I, CCR5-D32 and CCR5-Promoter-59029-A/G polymorphisms in Brazilian HIV-1-infected and uninfected individuals and their influence on CD4+ T-cell evolution HIV-1 infected individuals before and during HAART. Polymorphism detection was done in a transversal study of 200 HIV-1-infected and 82 uninfected individuals. The rate of CD4+ T cell increase or decrease was studied in a cohort of 155 HIV-1 infected individuals on pre and post-HAART. Polymorphisms were determined by PCR associated with RFLP. The rate of CD4+ T-cell decline or increase was also determined. HIV-1 infected and uninfected subjects showed, respectively, frequencies of 0.193 and 0.220 for SDF-1-3`A, of 0.140 and 0.110 for CCR2-V64I, of 0.038 and 0.055 for CCR5-D32, and of 0.442 and 0.390 for CCR5-P-59029-A/G. HIV-1-infected subjects carrying one, two or three of these four polymorphisms showed better CD4+ T-cell recovery than HIV-1-infected subjects carrying the four wild-type alleles (+2.7, +1.6, +3.5, and -0.9 lymphocytes/mu l/month, respectively). Regression logistic analysis showed that the CCR5-D32/CCR2-V64I association was predictor of positive CD4+ T cell slope after HAART. The distribution of polymorphisms did not differ between HIV-1-infected and uninfected individuals, but differed from more homogenous ethnic groups probably reflecting the miscegenation of the Brazilian population. We add further evidence of the role of these polymorphisms by showing that the CD4 gain was influenced by carriage of one or more of the polymorphisms studied here. These results highlight the possibility that these genetic traits can be useful to identify patients at risk for faster progression to AIDS or therapeutic failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To evaluate whether the A/G polymorphism at position 2518 in the regulatory region of the monocyte chemoattractant protein-1 (MCP-1) or the V/I polymorphism at position 64 of the receptor. CCR2, are associated with lupus nephritis (LN) or any clinical characteristics of the disease or with renal survival in a patient population. Methods. We selected 197 patients with lupus nephritis and 220 matched healthy controls for study. MCP-1 and CCR2 genotyping was performed by polymerase chain reaction. Clinical and laboratory data were compiled from patients` charts over followup that ranged from 6 months to 10 years. Results. The GIG genotype of MCP-1 was more common in LN patients (p = 0.019), while the A allele was associated with healthy controls (p = 0.007) as was the V allele of CCR2 (p = 0.046) compared to LN patients. Clinical index measures [SLE Disease Activity Index (SLEDAI)], immunological markers, renal histology, renal function at enrollment, and renal survival were not influenced by these polymorphisms. A less aggressive renal disease, measured by renal SLEDAI index, was associated with the V allele of the CCR2 gene polymorphism. Conclusion. These findings support that MCP-1 2518 GIG is associated with LN but there was no association of this genotype with renal function or renal survival. When studying CCR2 64 V/I polymorphism we showed a positive association of the V allele with healthy controls but no association of the genotype with LN patients. (First Release March 152010; J Rheumatol 2010;37:776-82; doi:10.3899/jrheum.090681)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphisms in chemokine receptors play an important role in the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer (CC). Our study examined the association of CCR2-64I (rs1799864) andCCR5-Δ32 (rs333) polymorphisms with susceptibility to develop cervical lesion (CIN and CC) in a Brazilian population. The genotyping of 139 women with cervical lesions and 151 women without cervical lesions for the CCR2-64I and CCR5-Δ32 polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism. The individuals carrying heterozygous or homozygous genotypes (GA+AA) for CCR2-64I polymorphisms seem to be at lower risk for cervical lesion [odds ratio (OR) = 0.37, p = 0.0008)]. The same was observed for the A allele (OR = 0.39, p = 0.0002), while no association was detected (p > 0.05) with CCR5-Δ32 polymorphism. Regarding the human papillomavirus (HPV) type, patients carrying the CCR2-64Ipolymorphism were protected against infection by HPV type 16 (OR = 0.35, p = 0.0184). In summary, our study showed a protective effect ofCCR2-64I rs1799864 polymorphism against the development of cervical lesions (CIN and CC) and in the susceptibility of HPV 16 infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related macular degeneration is characterized by the formation of drusen containing amyloid-β (Aβ) and the degeneration of photoreceptors. To explore the largely unknown role of Aβ in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aβ(1-42). Subretinal injection of the Aβ peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis. Aβ did not induce cell death in purified photoreceptor cell cultures, but did so in retinal cell cultures, thereby suggesting that the cellular environment plays a role in Aβ-induced photoreceptor apoptosis. Subretinal injection of Aβ was followed by activation and migration of microglial cells and then by photoreceptor apoptosis. Microglial cells phagocytosed rhodopsin-containing debris and Aβ in the subretinal space. Quantitative RT-PCR allowed us to identify a specific gene expression profile associated with the Aβ-induced progression of retinal degeneration and consistent with oxidative stress, inflammation, and an apoptotic program. The gene most highly upregulated in Aβ-injected retinas was that for the chemokine CCL2, and its absence or that of its cognate receptor CCR2 greatly reduced migration of activated microglial cells to the site of retinal injury and profoundly worsened photoreceptor degeneration and disorganization of the retinal pigment epithelium in Aβ-injected retinas. Our study pinpoints the roles of Aβ and of CCL2/CCR2 axis-dependent inflammation in photoreceptor apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec l'université Montpellier2 dans le laboratoire de pharmacologie moléculaire de Jean-Philippe Pin à l'institut de génomique fonctionnelle (IGF), Montpellier, France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Periapical lesions are chronic inflammatory disorders of periradicular tissues caused by etiologic agents of endodontic origin. The inflammatory chemokines are thought to be involved in the latter observed osteolysis. With a murine model of experimental periapical lesion, the objective of this study was to evaluate the role of the chemokine receptor CCR2 in the lesion progression, osteoclast differentiation and activation, and expression of inflammatory osteolysis-related mediators. Methods: For lesion induction, right mandibular first molars were opened surgically with a (1)/(4) carbine bur, and 4 bacterial strains were inoculated in the exposed dental pulp; left mandibular first molars were used as controls. Animals were killed at 3, 7, 14, and 21 days after surgeries to evaluate the kinetics of lesion development. Results: CCR2 KO mice showed wider lesions than WT mice. CCR2 KO mice also expressed higher levels of the osteoclastogenic and osteolytic factors, receptor activator of nuclear factor kappa B ligand (RANKL) and cathepsin K, of the proinflammatory cytokine tumor necrosis factor alpha, and of the neutrophil migration related chemokine, KC. Conclusions: These results suggest that CCR2 is important in host protection to periapical osteolysis. (J Endod 2010;36:244-250)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: The distribution of genetic polymorphisms of chemokine receptors CCR5-D32, CCR2-64I and chemokine (SDF1-3 A) mutations were studied in 110 Human Immunodeficiency Virus type 1 (HIV-1) seropositive individuals (seropositive group) and 139 seronegative individuals (seronegative group) from the population of the northern Brazilian city of Belém which is the capital of the state of Pará in the Brazilian Amazon. The CCR5-D32 mutation was found in the two groups at similar frequencies, i.e. 2.2% for the seronegative group and 2.7% for the seropositive group. The frequencies of the SDF1-3 A mutation were 21.0% for the seronegative group and 15.4% for the seropositive group, and the CCR2-64I allele was found at frequencies of 12.5% for the seronegative group and 5.4% for the seropositive group. Genotype distributions were consistent with Hardy-Weinberg expectations in both groups, suggesting that none of the three mutations has a detectable selective effect. Difference in the allelic and genotypic frequencies was statistically significant for the CCR2 locus, the frequency in the seronegative group being twice that found in the seropositive group. This finding may indicate a protective effect of the CCR2-64I mutation in relation to HIV transmission. However, considering that the CCR2-64I mutation has been more strongly associated with a decreased risk for progression for AIDS than to the resistance to the HIV infection, this could reflect an aspect of population structure or a Type I error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Cytokines and chemokines regulate bone remodeling during orthodontic tooth movement. CC chemokine ligand 2 (CCL2) is involved in osteoclast recruitment and activity, and its expression is increased in periodontal tissues under mechanical loading. In this study, we investigated whether the CC chemokine receptor 2 (CCR2)-CCL2 axis influences orthodontic tooth movement. Methods: A coil spring was placed in CCR2-deficient (CCR2(-/-)), wild-type, vehicle-treated, and P8A-treated (CCL2 analog) mice. In a histopathologic analysis, the amounts of orthodontic tooth movement and numbers of osteoclasts were determined. The expression of mediators involved in bone remodeling was evaluated by real-time polymerase chain reaction. Results: Orthodontic tooth movement and the number of TRAP-positive cells were significantly decreased in CCR2(-/-) and P8A-treated mice in relation to wild-type and vehicle-treated mice, respectively. The expressions of RANKL, RANK, and osteoblasts markers (COL-1 and OCN) were lower in CCR2(-/-) than in wild-type mice. No significant difference was found in osteoprotegerin levels between the groups. Conclusions: These data suggested a reduction of osteoclast and osteoblast activities in the absence of CCR2. The CCR2-CCL2 axis is positively associated with osteoclast recruitment, bone resorption, and orthodontic tooth movement. Therefore, blockage of the CCR2-CCL2 axis might be used in the future for modulating the extent of orthodontic tooth movement. (Am J Orthod Dentofacial Orthop 2012;141:153-60)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-) CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication. J. Leukoc. Biol. 91: 803-816; 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The migration of monocytes to sites of inflammation is largely determined by their response to chemokines. Although the chemokine specificities and expression patterns of chemokine receptors are well defined, it is still a matter of debate how cells integrate the messages provided by different chemokines that are concomitantly produced in physiological or pathological situations in vivo. We present evidence for one regulatory mechanism of human monocyte trafficking. Monocytes can integrate stimuli provided by inflammatory chemokines in the presence of homeostatic chemokines. In particular, migration and cell responses could occur at much lower concentrations of the CCR2 agonists, in the presence of chemokines (CCL19 and CCL21) that per se do not act on monocytes. Binding studies on CCR2(+) cells showed that CCL19 and CCL21 do not compete with the CCR2 agonist CCL2. Furthermore, the presence of CCL19 or CCL21 could influence the degradation of CCL2 and CCL7 on cells expressing the decoy receptor D6. These findings disclose a new scenario to further comprehend the complexity of chemokine-based monocyte trafficking in a vast variety of human inflammatory disorders.