11 resultados para CCR1
Resumo:
Periodontal disease (PD) is characterized by the inflammatory bone resorption in response to the bacterial challenge, in a host response that involves a series of chemokines supposed to control cell influx into periodontal tissues and determine disease outcome. In this study, we investigated the role of chemokines and its receptors in the immunoregulation of experimental PD in mice. Aggregatibacter actinomycetemcomitans-infected C57BI/6 (WT) mice developed an intense inflammatory reaction and severe alveolar bone resorption, associated with a high expression of CCL3 and the migration of CCR5+, CCR1+ and RANKL+ cells to periodontal tissues. However, CCL3KO-infected mice developed a similar disease phenotype than WT strain, characterized by the similar expression of cytokines (TNF-alpha, IFN-gamma and IL-10), osteoclastogenic factors (RANKL and OPG) and MMPs (MMP-1, MMP-2, MMP-3, TIMP-1 and TIMP-3), and similar patterns of CCR1+, CCR5+ and RANKL+ cell migration. The apparent lack of function for CCL3 is possible due the relative redundancy of chemokine system, since chemokines such as CCL4 and CCL5, which share the receptors CCR1 and CCR5 with CCL3, present a similar kinetics of expression than CCL3. Accordingly, CCL4 and CCL5 kinetics of expression after experimental periodontal infection remain unaltered regardless the presence/absence of CCL3. Conversely, the individual absence of CCR1 and CCR5 resulted in a decrease of leukocyte infiltration and alveolar bone loss. When CCR1 and CCR5 were simultaneously inhibited by met-RANTES treatment a significantly more effective attenuation of periodontitis progression was verified, associated with lower values of bone loss and decreased counts of leukocytes in periodontal tissues. Our results suggest that the absence of CCL3 does not affect the development of experimental PD in mice, probably due to the presence of homologous chemokines CCL4 and CCL5 that overcome the absence of this chemokine. In addition, our data demonstrate that the absence of chemokine receptors CCR1+ and CCR5+ attenuate of inflammatory bone resorption. Finally, our data shows data the simultaneous blockade of CCR1 and CCR5 with MetRANTEs presents a more pronounced effect in the arrest of disease progression, demonstrating the cooperative role of such receptors in the inflammatory bone resorption process throughout experimental PD. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
Platelets are known to contain platelet factor 4 and beta-thromboglobulin, alpha-chemokines containing the CXC motif, but recent studies extended the range to the beta-family characterized by the CC motif, including RANTES and Gro-alpha. There is also evidence for expression of chemokine receptors CCR4 and CXCR4 in platelets. This study shows that platelets have functional CCR1, CCR3, CCR4, and CXCR4 chemokine receptors. Polymerase chain reaction detected chemokine receptor messenger RNA in platelet RNA. CCR1, CCR3, and especially CCR4 gave strong signals; CXCR1 and CXCR4 were weakly positive. Flow cytometry with specific antibodies showed the presence of a clear signal for CXCR4 and weak signals for CCR1 and CCR3, whereas CXCR1, CXCR2, CXCR3, and CCR5 were all negative. Immunoprecipitation and Western blotting with polyclonal antibodies to cytoplasmic peptides clearly showed the presence of CCR1 and CCR4 in platelets in amounts comparable to monocytes and CCR4 transfected cells, respectively. Chemokines specific for these receptors, including monocyte chemotactic protein 1, macrophage inflammatory peptide 1alpha, eotaxin, RANTES, TARC, macrophage-derived chemokine, and stromal cell-derived factor 1, activate platelets to give Ca(++) signals, aggregation, and release of granule contents. Platelet aggregation was dependent on release of adenosine diphosphate (ADP) and its interaction with platelet ADP receptors. Part, but not all, of the Ca(++) signal was due to ADP release feeding back to its receptors. Platelet activation also involved heparan or chondroitin sulfate associated with the platelet surface and was inhibited by cleavage of these glycosaminoglycans or by heparin or low molecular weight heparin. These platelet receptors may be involved in inflammatory or allergic responses or in platelet activation in human immunodeficiency virus infection.
Resumo:
Chemokines and their receptors play important roles in nervous and immune systems. Little information, however, exists concerning this gene family in teleost fish. In the present Study, 17 C-C chemokine receptors genes were identified from Danio rerio, 9 from Gasterosteus aculeatus, 10 from Oryzius latipes, 8 from Takifugu rubripes and 5 from Tetraodon nigroviridis. Phylogenetic analysis showed that the orthologs to mammalian CCR6, 7, 8, 9 and CCRL1 receptors were evident in zebrafish, but the clear orthologs to mammalian CCR1, 2, 3, 4, 5 and 10 were not found in zebrafish. The gene structure of zebrafish CCR (zfCCR) was further analyzed. The open reading frame of zfCCR3-1, zfCCR3-3, zfCCR6-1, zfCCR6-2, zfCCR8-2 contain one exon, and two exons were identified for zfCCR2-1, zfCCR2-2, zfCCR4 and zfCCRLI-1, three exons for zfCCR3-2, zfCCR5 and zfCCR7, four exons for zfCCR8-1 and zfCCR9-1. The expression analyses showed that in zebrafish, most C-C chemokine receptor genes Were expressed in fertilized eggs and oocytes, and all the receptor genes were expressed in larval stages. The zfCCR2-2, zfCCR3-1, zfCCR4 and zfCCR6-2 genes were expressed in all normal organs examined, whereas not for zfCCR2-1, zfCCR3-3, zfCCR6-1, zfCCR8-1, zfCCR9-2 and zfCCRL1-2. The expression of zfCCR3-2, zfCCR5, zfCCR7, zfCCR9-1 and zfCCRLI-1 were detected in the majority organs. and zfCCR8-2 and zfCCR8-3 detected only in brain. The differential expression pattern of different paralogues in organs may indicate their difference in function, which requires further investigation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Atualmente o Brasil apresenta 3 milhões de indivíduos portadores da cardiomiopatia chagásica. Porém, tratamento etiológico com o fármaco Benzonidazol (BZ) na fase crônica da doença ainda não está elucidado. Acredita-se que a recomendação do BZ nessa fase, pode prevenir ou retardar a evolução clínica da cardiomiopatia na Doença Chagas (DC). Assim o objetivo do estudo é avaliar a produção de quimiocinas e expressão de seus receptores em Células mononucleares do sangue periférico - PBMC (de portadores crônicos da doença de Chagas) submetidas in vitro ao tratamento com BZ, após a infecção com T.cruzi. Foram selecionados 11 pacientes na fase crônica da doença. Amostras de sangue desses pacientes foram coletadas para obtenção de PBMC, em que foram cultivadas em placas de cultivo na concentração de 106 células/ml por poço. Após a adesão das células aderentes (principalmente macrófagos), as células não aderentes (principalmente linfócitos) foram removidas e as formas tripomastigotas foram adicionadas ao cultivo para infecção das células aderentes. Subsequente a incubação, as células não aderentes foram adicionadas novamente ao cultivo juntamente com o fármaco Bz (1µg/mL), ficando um co-cultivo de células aderentes infectadas com T.cruzi, células não aderentes e o BZ (C+T+BZ). As placas de cultura foram incubadas por períodos de 24h e 5 dias. Para uma análise fidedigna da ação do BZ nas células aderentes e não aderentes foi necessário a criação dos controles: células (C), células e tripomastigotas (C+T) e células e o BZ (C+BZ). Após o cultivo, foram coletados os sobrenadantes das culturas, para avaliação da produção de quimiocinas (CCL2, CXL9, CXL10, CCL5 e CXCL8) por CBA (Cytometric Bead Array). Posteriormente foi realizada a imunofenotipagem, avaliando a expressão dos receptores CCR3, CCR4, CXCR3, CXCR5, CCR1, CXCR4, CXCR2 e CCR5, em linfócitos T CD3+ e monócitos CD14+. Os resultados obtidos na avaliação dos linfócitos mostraram que o receptor CXCR5 esteve aumentado na condição C+T+BZ; e os receptores CCR4 e CCR1 estavam diminuídos nessa mesma condição. Nos monócitos observamos uma diminuição de CCR4 e um aumento do CCR5 nas mesmas condições. Com relação a dosagem de quimiocinas no sobrenadante, foi evidenciado que CCL2 e CXCL8 apresentaram uma diminuição na condição C+T+BZ. Assim podemos concluir que devido ao caráter inflamatório modulado, que o BZ conduziu, podemos afirmar que o fármaco demonstrou benefícios relevantes na expressão de receptores e na produção de quimiocinas
Resumo:
Objective. The aim of this study was to investigate the local and systemic expression of CC-chemokine ligand 3 (CCL3) and its receptors (CCR1 and CCR5) in tissue samples and peripheral blood mononuclear cells of recurrent aphthous stomatitis (RAS) patients. Study Design. This case-control study enrolled 29 patients presenting severe RAS manifestations and 20 non-RAS patients proportionally matched by sex and age. Total RNA was extracted from biopsy specimens and peripheral blood mononuclear cells for quatitative reverse-transcription polymerase chain reaction. The data obtained by relative quantification were evaluated by the 2(-Delta Delta Ct) method, normalized by the expression of an endogenous control, and analyzed by Student t test. Results. The results demonstrated overexpression in RAS tissue samples of all of the chemokines evaluated compared with healthy oral mucosa, whereas the blood samples showed only CCR1 overexpression in RAS patients. Conclusions. These findings suggest that the increased expression of CCL3, CCR1, and CCR5 may influence the immune response in RAS by T(H)1 cytokine polarization. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:93-98)
Resumo:
The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.
CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture.
Resumo:
Release of chemotactic factors in response to tissue damage has been described for different musculoskeletal tissues, including the intervertebral disc (IVD). This study investigated the chemoattractants that are released by induced degenerative IVDs and may be involved in recruiting mesenchymal stem cells (MSCs). Bovine caudal discs were cultured within a bioreactor and loaded under conditions that mimicked physiological or degenerative settings. Between days 4-6, medium was replaced by PBS, which was subsequently used for proteomic, ELISA and immunoprecipitation analyses of secreted chemokines and cytokines. A Boyden chamber assay was used to observe human MSC migration towards native and chemokine depleted media. Gene expression levels of chemokine receptors in human MSCs were analysed, and CCL5 was localised in bovine and human IVD by immunohistochemistry. Proteomic analysis revealed the presence of CCL5 and CXCL6 within conditioned media. Higher concentrations of CCL5 were found in the degenerative media, and a relationship was found between interleukin-1β and CCL5 concentration. Chemokine immunoprecipitation showed that MSCs had a significantly reduced chemotactic migration towards CCL5-immunoprecipitated and CCL5/CXCL6 co-immunoprecipitated media, whilst CXCL6 depletion did not change MSC chemotaxis. MSCs showed a significant increase in mRNA expression of the CCL5 receptors, CCR1 and CCR4, upon culture in degenerative media. Furthermore, CCL5 was identified in bovine and human disc tissue by immunohistochemistry. Hence, CCL5 may be a key chemoattractant that is produced and released by the intervertebral disc cells. Therefore, these factors could be used to enhance stem/progenitor cell mobilisation in regenerative therapies for early stages of disc degeneration.
Resumo:
The HIV-1 Tat protein is a potent chemoattractant for monocytes. We observed that Tat shows conserved amino acids corresponding to critical sequences of the chemokines, a family of molecules known for their potent ability to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the “chemokine-like” region of Tat induced a rapid and transient Ca2+ influx in monocytes and macrophages, analogous to β-chemokines. Both monocyte migration and Ca2+ mobilization were pertussis toxin sensitive and cholera toxin insensitive. Cross-desensitization studies indicated that Tat shares receptors with MCP-1, MCP-3, and eotaxin. Tat was able to displace binding of β-chemokines from the β-chemokine receptors CCR2 and CCR3, but not CCR1, CCR4, and CCR5. Direct receptor binding experiments with the CysL24–51 peptide confirmed binding to cells transfected with CCR2 and CCR3. HIV-1 Tat appears to mimic β-chemokine features, which may serve to locally recruit chemokine receptor-expressing monocytes/macrophages toward HIV producing cells and facilitate activation and infection.
Resumo:
The HIV-1 envelope protein gp120 induces apoptosis in hippocampal neurons. Because chemokine receptors act as cellular receptors for HIV-1, we examined rat hippocampal neurons for the presence of functional chemokine receptors. Fura-2-based Ca imaging showed that numerous chemokines, including SDF-1α, RANTES, and fractalkine, affect neuronal Ca signaling, suggesting that hippocampal neurons possess a wide variety of chemokine receptors. Chemokines also blocked the frequency of spontaneous glutamatergic excitatory postsynaptic currents recorded from these neurons and reduced voltage-dependent Ca currents in the same neurons. Reverse transcription–PCR demonstrated the expression of CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and CX3CR1, as well as the chemokine fractalkine in these neurons. Both fractalkine and macrophage-derived chemokine (MDC) produced a time-dependent activation of extracellular response kinases (ERK)-1/2, whereas no activation of c-JUN NH2-terminal protein kinase (JNK)/stress-activated protein kinase, or p38 was evident. Furthermore, these two chemokines, as well as SDF-1α, activated the Ca- and cAMP-dependent transcription factor CREB. Several chemokines were able also to block gp120-induced apoptosis of hippocampal neurons, both in the presence and absence of the glial feeder layer. These data suggest that chemokine receptors may directly mediate gp120 neurotoxicity.
Resumo:
Cloning and sequencing of the upstream region of the gene of the CC chemokine HCC-1 led to the discovery of an adjacent gene coding for a CC chemokine that was named “HCC-2.” The two genes are separated by 12-kbp and reside in a head-to-tail orientation on chromosome 17. At variance with the genes for HCC-1 and other human CC chemokines, which have a three-exon-two-intron structure, the HCC-2 gene consists of four exons and three introns. Expression of HCC-2 and HCC-1 as studied by Northern analysis revealed, in addition to the regular, monocistronic mRNAs, a common, bicistronic transcript. In contrast to HCC-1, which is expressed constitutively in numerous human tissues, HCC-2 is expressed only in the gut and the liver. HCC-2 shares significant sequence homology with CKβ8 and the murine chemokines C10, CCF18/MRP-2, and macrophage inflammatory protein 1γ, which all contain six instead of four conserved cysteines. The two additional cysteines of HCC-2 form a third disulfide bond, which anchors the COOH-terminal domain to the core of the molecule. Highly purified recombinant HCC-2 was tested on neutrophils, eosinophils, monocytes, and lymphocytes and was found to exhibit marked functional similarities to macrophage inflammatory protein 1α. It is a potent chemoattractant and inducer of enzyme release in monocytes and a moderately active attractant for eosinophils. Desensitization studies indicate that HCC-2 acts mainly via CC chemokine receptor CCR1.