997 resultados para CBD CdS thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 degrees C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Omega cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 x 10(15) cm(-3) and 30.7 cm(2)V(-1) s(-1) respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In: CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1-2 Omega cm and was reduced to 40 x 10(-3) Omega cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoconductivity (PC) processes may be the most suitable technique for obtaining information about the states in the gap. It finds applications in photovoItaics, photo detection and radiation measurements. The main task in the area of photovoltaics, is to increase the efficiency of the device and also to develop new materials with good optoelectronic properties useful for energy conversion, keeping the idea of cost effectiveness. Photoconduction includes generation and recombination of carriers and their transport to the electrodes. So thermal relaxation process, charge carrier statistics, effects of electrodes and several mechanisms of recombination are involved in photoconductivity.A major effect of trapping is to make the experimentally observed decay time of photocurrent, longer than carrier lifetime. If no trapping centers are present, then observed photocurrent will decay in the same way as the density of free carriers and the observed decay time will be equal to carrier lifetime. If the density of free carriers is much less than density of trapped carriers, the entire decay of photocurrent is effectively dominated by the rate of trap emptying rather than by the rate of recombination.In the present study, the decay time of carriers was measured using photoconductive decay (PCD) technique. For the measurements, the film was loaded in a liquid Helium cryostat and the temperature was controlled using Lakshore Auto tuning temperature controller (Model 321). White light was used to illuminate the required area of the sample. Heat radiation from the light source was avoided by passing the light beam through a water filter. The decay current. after switching off the illumination. was measured using a Kiethely 2000 multi meter. Sets of PCD measurements were taken varying sample temperature, sample preparation temperature, thickness of the film, partial pressure of Oxygen and concentration of a particular element in a compound. Decay times were calculated using the rate window technique, which is a decay sampling technique particularly suited to computerized analysis. For PCD curves with two well-defined regions, two windows were chosen, one at the fast decay region and the other at the slow decay region. The curves in a particular window were exponentially fitted using Microsoft Excel 2000 programme. These decay times were plotted against sample temperature and sample preparation temperature to study the effect of various defects in the film. These studies were done in order to optimize conditions of preparation technique so as to get good photosensitive samples. useful for photovoltaic applications.Materials selected for the study were CdS, In2Se3, CuIn2Se3 and CuInS2• Photoconductivity studies done on these samples are organised in six chapters including introduction and conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TiO2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment, Both the photocurrent response and the charge recombination kinetics in TiO2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects, The semiconductor sensitization made the slow photoresponse disappeared and the steady-state photocurrent value increased drastically, which suggested that the sensitization of TiO2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable bilayer thin films of indium tin oxide (ITO) on CdS and CdS on ITO were formed for the window material of solar cells by chemical bath and sputtering methods. Scanning electron microscopy and X-ray diffraction studies have shown that both the ITO and CdS films are continuous, homogeneous, with high compactness. Measurement of the CdS film thickness across the 2 x 4 cm(2) reveals the good uniformity of these films. Four-point probe measurements show that the resistivity of a CdS film on an ITO surface is much better than that of the single CdS film The thermal stability of an ITO/CdS bilayer, interfacial reaction and optical transmittance were investigated at different annealing temperatures and environments (air, vacuum and N-2 + H-2). The results showed that the ITO/CdS bilayer film is a good window material for the CuInSe2 and CdTe cells. It is a simple method using a small amount of the cadmium compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dept.of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of a study of the sulphurization time effects on Cu2ZnSnS4 absorbers and thin film solar cells prepared from dc-sputtered tackedmetallic precursors. Three different time intervals, 10 min, 30min and 60 min, at maximum sulphurization temperature were considered. The effects of this parameter' change were studied both on the absorber layer properties and on the final solar cell performance. The composition, structure, morphology and thicknesses of the CZTS layers were analyzed. The electrical characterization of the absorber layer was carried out by measuring the transversal electrical resistance of the samples as a function of temperature. This study shows an increase of the conductivity activation energy from 10 meV to 54meV for increasing sulphurization time from 10min to 60min. The solar cells were built with the following structure: SLG/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Ni:Al grid. Several ac response equivalent circuit models were tested to fit impedance measurements. The best results were used to extract the device series and shunt resistances and capacitances. Absorber layer's electronic properties were also determined using the Mott–Schottky method. The results show a decrease of the average acceptor doping density and built-in voltage, from 2.0 1017 cm−3 to 6.5 1015 cm−3 and from 0.71 V to 0.51 V, respectively, with increasing sulphurization time. These results also show an increase of the depletion region width from approximately 90 nm–250 nm.