133 resultados para CB1
Resumo:
Facile synthesis of biaryl pyrazole sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716, 1) and an investigation of the effect of replacement of the –CO group in the compound 1 by the –SO2 group in the aminopiperidine region is reported. Primary ex-vivo pharmacological testing and in vitro screening of sulfonamide derivative 2 showed the loss of CB1 receptor antagonism.
Resumo:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Resumo:
Background: Type-1 cannabinoid receptors (CB1R) are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH) that participates in homeostatic and behavioral functions including food intake. Although CB1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. Methodology/Principal Findings: Light and electron microscopy techniques were used to analyze CB1R distribution in the VMH of CB1R-WT, CB1R-KO and conditional mutant mice bearing a selective deletion of CB1R in cortical glutamatergic (Glu-CB1R-KO) or GABAergic neurons (GABA-CB1R-KO). At light microscopy, CB1R immunolabeling was observed in the VMH of CB1R-WT and Glu-CB1R-KO animals, being remarkably reduced in GABA-CB1R-KO mice. In the electron microscope, CB1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB1R immunopositive profiles and CB1R density in terminals making asymmetric or symmetric synapses in CB1R-WT mice. Furthermore, the proportion of CB1R immunopositive terminals/preterminals in CB1R-WT and Glu-CB1R-KO mice was reduced in GABA-CB1R-KO mutants. CB1R density was similar in all animal conditions. Finally, the percentage of CB1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB1R-KO mutants relative to CB1R-WT mice, indicating that CB1R was distributed in cortical and subcortical excitatory synaptic terminals. Conclusions/Significance: Our anatomical results support the idea that the VMH is a relevant hub candidate in the endocannabinoid-mediated modulation of the excitatory and inhibitory neurotransmission of cortical and subcortical pathways regulating essential hypothalamic functions for the individual's survival such as the feeding behavior.
Resumo:
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of alpha-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle-regulated by both diet and CB1 receptor activity-through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.
Resumo:
吗啡是临床常用的镇痛药物之一,通过模拟内源性抗痛物质脑啡肽的作用,激活中枢神经阿片受体而产生强大的镇痛作用。吗啡属于阿片类生物碱,为阿片受体激动剂,是目前我国主要的毒品成瘾类型之一,对人民生命健康危害极大。目前我国登记在册的吗啡成瘾者约有100万,每年导致的直接经济损失超过1000亿元。因此吗啡成瘾机制的研究以及治疗,是目前神经疾病的研究重点之一。 吗啡成瘾与其结合的受体有关。吗啡除结合阿片受体外,也可能结合大麻素受体,现发现体内有两种大麻素受体的存在:CB1受体和CB2受体。大麻CB1、CB2受体都是G蛋白耦联受体。其中CB1受体主要位于脑、脊髓与外周神经系统中,脑内CB1受体主要分布于基底神经节(黑质、苍白球、外侧纹状体)、海马CA锥体细胞层,小脑和大脑皮层。因此推测大麻CB1受体的功能可能与成瘾、记忆、认知、运动控制的调节有关。而大麻CB2受体主要分布于外周组织,如脾脏边缘区、扁桃体等,它的这种分布可能与免疫抑制作用有关。近来的研究发现大麻CB2受体在中枢神经系统也有分布,目前对其在此分布的功能不明确,推测可能与成瘾、抑郁症等神经类疾病有密切关系。 在药物成瘾导致的精神依赖作用中,奖赏效应是各种药物成瘾的药理学基础。中脑—边缘系统((mesolimbic dopamine system,MLDS)是药物奖赏效应的神经解剖学基础。目前认为内源性大麻素所起的药理作用与多巴胺能和阿片能的神经传递有密切的关系。因此推断大麻素CB1受体与慢性吗啡成瘾有密切关系,至少是部分参与到慢性吗啡成瘾过程中。 相较于较多的关于大麻CB1受体的研究,有关大麻CB2受体的研究很少。尽管近来证实大麻CB2受体也分布于中枢神经系统,但在慢性吗啡成瘾时,大麻CB2受体表达的改变仍不清楚。在本项目中,我们将对慢性吗啡成瘾动物通过分子生物学、蛋白质化学、免疫组织化学的方法,探讨大麻CB2受体在中枢神经系统的分布和表达,以及大麻CB2受体在吗啡成瘾中可能的作用。 吗啡对免疫系统有抑制作用, 包括抑制淋巴细胞增殖, 减少细胞因子的分泌,减弱自然杀伤细胞(NKC)的细胞毒作用。现已证实激活周围神经系统的CB2受体可诱导IL-4的生成,从而影响阿片μ型受体的转录。此发现提供了内源性大麻系统-阿片系统-免疫系统之间存在相互作用的关系。然而,吗啡吸食是否通过CB2受体从而导致免疫功能的抑制,现在还没有直接证据,在本实验中我们将探讨CB2受体与吗啡成瘾导致免疫功能的改变有关。 实验结果显示(1)应用RT-PCR法,检测到大麻素受体CB1在慢性吗啡成瘾大鼠的皮质和海马处mRNA表达水平与对照组大鼠有明显不同。(2)应用western免疫印迹法,检测到大麻素受体CB1在慢性吗啡成瘾大鼠的皮质,海马和脑干处蛋白表达水平与对照组大鼠有明显不同。在脑干处,虽然mRNA表达水平无变化,但蛋白质的表达水平上升。(3)应用免疫组化检测到大麻素受体CB1在大鼠的皮质,海马,脑干,小脑处都广泛分布。(4)应用RT-PCR法,检测到大麻素受体CB2在慢性吗啡成瘾大鼠的皮质,海马,脑干处mRNA表达水平与对照组大鼠有明显不同。(5)应用western免疫印迹法,检测到大麻素受体CB2在慢性吗啡成瘾大鼠的皮质,海马,脑干蛋白表达水平与对照组大鼠有明显不同。且蛋白质的表达改变趋势与mRNA表达水平的改变相似。(6)应用免疫组化法检测到大麻素受体CB2在大鼠的皮质,海马,脑干,小脑处都广泛分布。但数量明显少于大麻CB1受体。(7)应用直接ELISA法,检测到慢性吗啡成瘾大鼠的血清与对照组大鼠的血清比较,IgM表达下降;IgG表达上升。 实验结果提示大麻受体CB1和CB2 很可能在慢性吗啡成瘾过程起着重要的作用,至少是部分参与到慢性吗啡成瘾的过程中。因为大麻素受体CB1和CB2都属于G 蛋白耦连受体,长期持续使用吗啡,其表达的变化可能会导致cAMP信号通路的上调;提高了腺苷酸环化酶(AC)和蛋白激酶A(PKA)的活性从而激活下游相关基因的表达最终导致成瘾。此外大麻素受体CB1和CB2表达的变化可能与慢性吗啡成瘾后免疫功能的改变有相关性。 通过以上的的实验结果,可以得到以下的结论:(1)我们验证了大麻素受体CB1在慢性吗啡成瘾大鼠的皮质,海马和脑干处mRNA和蛋白质表达水平与对照组大鼠有明显不同,且大麻CB1受体在大鼠中枢神经系统中广泛大量分布,表明大麻素受体CB1很可能在慢性吗啡成瘾过程中起着重要的作用,至少部分参与到慢性吗啡成瘾的过程中。(2)我们第一次证实了大麻素受体CB2在吗啡成瘾大鼠的皮质,海马和脑干处mRNA和蛋白质表达水平与对照组大鼠有明显不同,且大麻CB2受体在大鼠中枢神经系统中少量广泛分布。表明大麻素受体CB2很可能在慢性吗啡成瘾过程中起着重要的作用,至少部分参与到慢性吗啡成瘾的过程中。(3)同时我们发现大麻素受体CB1和CB2在大鼠脑组织中广泛表达,表明内源性大麻系统有可能广泛的参与各种神经疾病,很可能成为治疗的新靶点。(4)最后我们发现慢性吗啡成瘾大鼠血液中IgM表达下降;IgG表达上升,表明慢性吗啡成瘾对机体的免疫功能有广泛的调节作用。慢性吗啡成瘾大鼠血清CB2受体mRNA表达上升。我们证实了大麻受体CB2可能正是把神经系统和免疫系统相联系的一个靶点。
Resumo:
Cannabinoid receptors are members of the large family of G-protein coupled receptors. Two types of cannabinoid receptor have been discovered: CB1 and CB2. CB1 receptors are localised predominantly in the brain whereas CB2 receptors are more abundant in peripheral nervous system cells. CB1 receptors have been related with a number of disorders, including depression, anxiety, stress, schizophrenia, chronic pain and obesity. For this reason, several cannabinoid ligands were developed as drug candidates. Among these ligands, a prominent position is occupied by SR141716 (Rimonabant), which is a pyrazole derivative with inverse agonist activity discovered by Sanofi-Synthelabo in 1994. This compound was marketed in Europe as an anti-obesity drug, but subsequently withdrawn due to its side-effects. Since the relationship between the CB1 receptors’ functional modification, density and distribution, and the beginning of a pathological state is still not well understood, the development of radio-ligands suitable for in vivo PET (Positron Emission Tomography) functional imaging of CB1 receptors remains an important area of research in medicine and drug development. To date, a few radiotracers have been synthesised and tested in vivo, but most of them afforded unsatisfactory brain imaging results. A handful of radiolabelled CB1 PET ligands have also been submitted to clinical trials in humans. In this PhD Thesis the design, synthesis and characterization of three new classes of potential high-affinity CB1 ligands as candidate PET tracers is described.
CB1 cannabinoid receptor deficiency promotes cardiac remodeling induced by pressure overload in mice
Resumo:
Background: The endocannabinoid system is known to play a role in regulating myocardial contractility, but the influence of cannabinoid receptor 1 (CB1) deficiency on chronic heart failure (CHF) remains unclear. In this study we attempted to investigate the effect of CB1 deficiency on CHF induced by pressure overload and the possible mechanisms involved. Methods and results: A CHF model was created by transverse aortic constriction (TAC) in both CB1 knockout mice and wild-type mice. CB1 knockout mice showed a marked increase of mortality due to CHF from 4 to 8 weeks after TAC (p = 0.021). Five weeks after TAC, in contrast to wild-type mice, CB1 knockout mice had a higher left ventricular (LV) end-diastolic pressure, lower rate of LV pressure change (± dp/dt max), lower LV contractility index, and a larger heart weight to body weight ratio and lung weight to body weight ratio compared with wild-type mice (all p < 0.05-0.001). Phosphorylation of the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (P38 and ERK) was higher in CB1 knockout mice than that in wild-type mice. In cultured neonatal rat cardiomyocytes, a CB1 agonist reduced cAMP production stimulated by isoproterenol or forskolin, and suppressed phosphorylation of the EGFR, P38, and ERK, while the inhibitory effect of a CB1 agonist on EGFR phosphorylation was abrogated by CB1 knockdown. Conclusion: These findings indicate that cannabinoid receptor 1 inactivation promotes cardiac remodeling by enhancing the activity of the epidermal growth factor receptor and mitogen-activated protein kinases. © 2012 Elsevier Ireland Ltd.
Resumo:
Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.
Resumo:
Au cours du développement, les axones des cellules ganglionnaires de la rétine (CGRs) voyagent sur de longues distances pour établir des connexions avec leurs cellules cibles. La navigation des cônes de croissance est guidée par différentes molécules chimiotropiques présentes dans leur environnement. Les endocannabinoïdes (eCB) sont d’importants neuromodulateurs qui régulent de manière rétrograde la fonction de nombreuses synapses du cerveau. Ils agissent principalement par le biais de leurs récepteurs liés à une protéine Gi/o CB1 (CB1R) et CB2 (CB2R). La présence des eCBs durant le stade fœtal et la période postnatale suggère leur implication dans des événements régulant le développement du système nerveux. Cette thèse confirme l’expression des récepteurs aux cannabinoïdes CB1 et CB2 ainsi que l’enzyme dégradant les eCBs lors du développement embryonnaire et perinatal des CGRs et de la voie rétinothalamique in vivo. La manipulation pharmacologique de l’activité de CB1R et CB2R réorganise la morphologie du cône de croissance des CGRs et des neurones corticaux in vitro. De plus, la stimulation locale avec un agoniste de CB1R ou de CB2R modifie le comportement du cône de croissance entraînant sa répulsion. CB1R et CB2R modulent par le biais de la voie de signalisation AMPc/PKA, la mobilisation de DCC à la membrane plasmique. Par ailleurs, les résultats de cette recherche démontrent également l’implication de CB1R et CB2R dans la ségrégation des projections ipsi- et controlatérales et le développement de la voie rétinothalamique.
Resumo:
Hepcidin is cysteine-rich short peptide of innate immune system of fishes, equipped to perform prevention and proliferation of invading pathogens like bacteria and viruses by limiting iron availability and activating intracellular cascades. Hepcidins are diverse in teleost fishes, due to the varied aquatic environments including exposure to pathogens, oxygenation and iron concentration. In the present study, we report a 87-amino acid (aa) preprohepcidin (Hepc-CB1) with a signal peptide of 24 aa, a prodomain of 39 aa and a bioactive mature peptide of 24 aa from the gill mRNA transcripts of the deep-sea fish spinyjaw greeneye, Chlorophthalmus bicornis. Molecular characterisation and phylogenetic analysis categorised the peptide to HAMP2-like group with a mature peptide of 2.53 kDa; a net positive charge (?3) and capacity to form b-hairpin-like structure configured by 8 conserved cysteines. The present work provides new insight into the mass gene duplication events and adaptive evolution of hepcidin isoforms with respect to environmental influences and positive Darwinian selection. This work reports a novel hepcidin isoform under the group HAMP2 from a nonacanthopterygian deep-sea fish, C. bicornis
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays a key role in the control of appetite and energy balance. Both ghrelin and cannabinoid receptor agonists increase food intake when administered into this nucleus: this study investigated possible interactions between the two systems in relation to eating. The orexigenic effect of ghrelin (100 pmol) when infused in to the PVN was reversed by a small, systemic dose of the CB1 cannabinoid receptor antagonist SR141716 (1 mg kg(-1)). This is the first demonstration of a functional relationship between brain ghrelin and endocannabinoid systems, and, although it needs to be further investigated, the effect of ghrelin on food intake when injected into the PVN seems to be mediated by stimulation of cannabinoid release.
Resumo:
PSNCBAM-1 has recently been described as a cannabinoid CB1 receptor allosteric antagonist associated with hypophagic effects in vivo; however, PSNCBAM-1 effects on CB1 ligand-mediated modulation of neuronal excitability remain unknown. Here, we investigate PSNCBAM-1 actions on CB1 receptor-stimulated [35S]GTPγS binding in cerebellar membranes and on CB1 ligand modulation of presynaptic CB1 receptors at inhibitory interneurone-Purkinje cell (IN-PC) synapses in the cerebellum using whole-cell electrophysiology. PSNCBAM-1 caused non-competitive antagonism in [35S]GTPγS binding studies, with higher potency against the CB receptor agonist CP55940 than for WIN55,212-2 (WIN55). In electrophysiological studies, WIN55 and CP55940 reduced miniature inhibitory postsynaptic currents (mIPSCs) frequency, but not amplitude. PSNCBAM-1 application alone had no effect on mIPSCs; however, PSNCBAM-1 pre-treatment revealed agonist-dependent functional antagonism, abolishing CP55940-induced reductions in mIPSC frequency, but having no clear effect on WIN55 actions. The CB1 antagonist/inverse agonist AM251 increased mIPSC frequency beyond control, this effect was reversed by PSNCBAM-1. PSNCBAM-1 pre-treatment also attenuated AM251 effects. Thus, PSNCBAM-1 reduced CB1 receptor ligand functional efficacy in the cerebellum. The differential effect of PSNCBAM-1 on CP55940 versus WIN55 actions in [35S]GTPγS binding and electrophysiological studies and the attenuation of AM251 effects are consistent with the ligand-dependency associated with allosteric modulation. These data provide the first description of functional PSNCBAM-1 allosteric antagonist effects on neuronal excitability in the mammalian CNS. PSNCBAM-1 allosteric antagonism may provide viable therapeutic alternatives to orthosteric CB1 antagonists/inverse agonists in the treatment of CNS disease.