957 resultados para CATALYST LAYERS
Resumo:
This thesis presents a numerical study of reaction and diffusion phenomena in wall-coated heat-exchanger microreactors. Specifically, the interactions between an endothermic and exothermic catalyst layer separated by an impermeable wall is studied to understand the inherent behavior of the system. Two modeling approaches are presented, the first under the assumption of a constant thermal gradient and neglecting heat of reaction and the second considering both catalyst layers and reaction heat. Both studies found that thicker, more thermally insulating catalyst layers increase the effectiveness of the exothermic reaction by allowing for accumulation of reaction heat while thinner catalyst layers for the endothermic catalyst allow for direct access of the reactant to higher wall temperatures.
Resumo:
Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer(LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 mu A was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L-1 H2SO4, at a sweeping rate of 50mVs(-1). Oxygen-like species are formed at less positive potentials for the Pt-SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k Omega cm(2)) compared with the Pt-SnO2/PAH film with 1 min of electrodeposition (0.4 k Omega cm(2)). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Proton exchange membrane fuel cell (PEMFC) requires membrane electrode assemblies (MEA) to generate electrical energy from hydrogen and oxygen. In this study a MEA production process by sieve printing and an ink composition were developed to produce catalyst layers of MEAs. The deposition of the exact catalyst content was possible on cathodes and anodes with only one print step. The optimal ink developed shown viscosity of 2.75 Pa s, density 1.27 g cm-3, total solid content of 33.76 % and tack of 92 U.T. The electrodes prepared in only one printing step showed higher performance than those prepared in several steps.
Resumo:
Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.
Resumo:
An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.
Resumo:
Ultrathin and transparent nanostructured Ni(OH)2 films were deposited on conducting glass (F:SnO2) by a urea-based chemical bath deposition method. By controlling the deposition time, the amount of deposited Ni(OH)2 was varied over 7 orders of magnitude. The turnover number for O2 generation, defined as the number of O2 molecules generated per catalytic site (Ni atom) and per second, increases drastically as the electrocatalyst amount decreases. The electrocatalytic activity of the studied samples (measured as the current density at a certain potential) increases with the amount of deposited Ni(OH)2 until a saturation value is already obtained for a thin film of around 1 nm in thickness, composed of Ni(OH)2 nanoplatelets lying flat on the conductive support. The deposition of additional amounts of catalyst generates a porous honeycomb structure that does not improve (only maintains) the electrocatalytic activity. The optimized ultrathin electrodes show a remarkable stability, which indicates that the preparation of highly transparent electrodes, efficient for oxygen evolution, with a minimum amount of nickel is possible.
Resumo:
To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
Three welding procedures used to rebuild worn shafts in sugar cane mills were analysed: two submerged arc welding processes and one flux cored arc welding (FCAW) process. Sliding wear tests were in accordance with ASTM G 77 standard, using rings of welding material, blocks of bronze SAE 67, and oil as lubricant. The worn surfaces of rings and blocks were analysed by scanning electron microscopy to determine the wear mechanisms. High contact pressure, high operating temperature, and low relative speed were applied in sliding wear tests to match the conditions in sugar cane mills. Transferred material and evidence of adhesive junctions were detected. Additionally, hardened fragments produced abrasive grooves on the worn surfaces. The welding deposits that presented strong adhesion on the worn surface showed higher mass loss than the materials that presented more abrasive characteristics. Plastic mechanical properties were measured and related to the mass loss. The tested materials presented similar hardness but different yield stress and hardening coefficient. A relationship between wear, strain hardening coefficient, and yield stress was found. The welding deposit that presented the highest hardening coefficient showed the highest mass loss, with evidence of severe adhesion on the worn surface.
Resumo:
We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter similar to 2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.
Resumo:
PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.
Resumo:
AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 degrees C and 1000 degrees C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe(2)B or FeB was the predominant phase in the boride layers. The layers exhibited ""saw-tooth"" morphology at the substrate interface; layer thicknesses varied from 60 to 120 mu m, and hardness in the range of 1596-1744 HV were obtained. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.