5 resultados para CASSIOPEA-XAMACHANA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aimed at the isolation and structural/functional characterization of a phospholipase A(2) (CgPLA(2)) from the extract of the anemone Condylactis gigantea. CgPLA2 was isolated with a high purity level through three chromatographic steps, showing pT8.6 and molecular weights of 14,500 and 29,000 for the monomer and dimer, respectively. CgPLA2 showed a high catalytic activity upon fluorescent phospholipids inducing no direct hemolytic activity. This enzyme, which is Ca2+-dependent, showed a lower stability against temperature and pH variations when compared with snake venom enzymes. The enzymatic activity was significantly reduced or completely abolished after chemical modification of CgPLA2 with BPB. Its cDNA was then obtained, with 357 base pairs which codified for a mature protein of 119 amino acid residues. A comparative analysis of the primary structure of CgPLA2 revealed 84%, 61%, 43% and 42% similarity to the PLA2s from Adamsia carciniopados, Nematostella vectensis, Vipera russelli russelli and Both raps jararacussu, respectively. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As espécies de Cubozoa e Scyphozoa costeiras que ocorrem no Brasil são descritas, com base em espécimes de coleções de museus e exemplares recém-coletados. Chaves de identificação e um glossário também são apresentados. As espécies descritas são: Aurelia sp.; Cassiopea xamachana Bigelow, 1892; Chiropsalmus quadrumanus (Müller, 1859); Chrysaora lactea Eschscholtz, 1829; Drymonema dalmatinum Haeckel, 1880; Linuche unguiculata (Swartz, 1788); Lychnorhiza lucerna Haeckel, 1880; Nausithoe aurea Silveira & Morandini, 1997; Phyllorhiza punctata von Lendenfeld, 1884; Stomolophus meleagris Agassiz, 1862; Tamoya haplonema Müller, 1859 e Tripedalia cystophora Conant, 1897.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports on the extended distribution of nineteen species in the Mediterranean. These are: Upeneus pori (Fish:Turkey), Bursatella leachii (Mollusca, Opisthobranchia: eastern coast of Spain), Sparisoma cretense (Fish: Ionian coast of Greece), Pseudobryopsis myura (Chlorophyta:Turkey), Aplysia dactylomela (Mollusca, Opisthobranchia: Karpathos island, and Kyklades Archipelago, Greece), Asparagopsis armata and Botryocladia madagascariensis (Rhodophyta: South Peloponnesos, Greece), Oxynotus centrina (Fish: Greece), Caulerpa racemosa var. cylindracea (Chlorophyta ), Stypopodium schimperi (Phaeophyta ) Siganus luridus and Stephanolepis diaspros (Fish) Percnon gibbesi (Decapoda, Brachyura) (Kyklades Archipelago, Greece), Cerithium scabridum (Mollusca, Prosobranchia: Anavissos: Greece) and Cerithium renovatum (Mollusca, Prosobranchia: N. Κriti), Cassiopea andromeda (Scyphomedusa: Rhodos Island, Greece), Abra tenuis (Mollusca Bivalvia: Vouliagmeni Lake, Greece) Lagocephalus lagocephalus (Fish: Calabrian coast, Italy) and Plocamopherus ocellatus (Mollusca, Opisthobranchia: İskenderun Bay, Turkey).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. ^ To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. ^ As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. ^ My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.